Have a personal or library account? Click to login
Euler’s Partition Theorem Cover
By: Karol Pąk  
Open Access
|Aug 2015

References

  1. [1] George E. Andrews and Kimmo Eriksson. Integer Partitions. ISBN 9780521600903.
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  3. [3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
  4. [4] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics, 2(1):65-69, 1991.
  5. [5] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  6. [6] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  7. [7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  8. [8] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  9. [9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  10. [10] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  11. [11] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  12. [12] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  13. [13] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  14. [14] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011. doi:10.2478/v10037-011-0025-2.10.2478/v10037-011-0025-2
  15. [15] Marco B. Caminati. First order languages: Further syntax and semantics. Formalized Mathematics, 19(3):179-192, 2011. doi:10.2478/v10037-011-0027-0.10.2478/v10037-011-0027-0
  16. [16] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  17. [17] Magdalena Jastrzȩbska and Adam Grabowski. Some properties of Fibonacci numbers. Formalized Mathematics, 12(3):307-313, 2004.
  18. [18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  19. [19] Karol Pak. Flexary operations. Formalized Mathematics, 23(2):81-92, 2015. doi:10.1515 /forma-2015-0008.10.1515/forma-2015-0008
  20. [20] Karol Pak. The Nagata-Smirnov theorem. Part II. Formalized Mathematics, 12(3):385-389, 2004.
  21. [21] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
  22. [22] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
  23. [23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
  24. [24] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  25. [25] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
  26. [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  27. [27] Freek Wiedijk. Formalizing 100 theorems.
  28. [28] Herbert S. Wilf. Lectures on integer partitions.
  29. [29] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  30. [30] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of probability, and addition of matrices of real elements. Formalized Mathematics, 14(3): 101-108, 2006. doi:10.2478/v10037-006-0012-1. 10.2478/v10037-006-0012-1
DOI: https://doi.org/10.1515/forma-2015-0009 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 93 - 99
Submitted on: Mar 26, 2015
|
Published on: Aug 13, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Keywords:

© 2015 Karol Pąk, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.