Have a personal or library account? Click to login
Towards understanding the role of ectomycorrhizal fungi in forest phosphorus cycling : a modelling approach Cover

Towards understanding the role of ectomycorrhizal fungi in forest phosphorus cycling : a modelling approach

Open Access
|May 2018

References

  1. Barber, S. A., 1995: Soil nutrient bioavailability: a mechanistic approach 2nd edition. New York, John Wiley & Sons, 418 p.
  2. Boisvenue, C., Running, S. W., 2006: Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Global Change Biology, 12:862–882.10.1111/j.1365-2486.2006.01134.x
  3. Bontemps, J. D., Hervé, J. C., Leban, J. M., Dhôte, J. F., 2011: Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees, 25:237–251.10.1007/s00468-010-0501-2
  4. Brady, N. C., Weil, R. R., 2008: The nature and properties of soils. 14th ed. Upper Saddle River, Pearson Prentice Hall, 975 p.
  5. Braun, S., Thomas, V. F., Quiring, R., Flückiger, W., 2010: Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158:2043–2052.10.1016/j.envpol.2009.11.03020015583
  6. Chapin III, F. S., Schulze, E. D., Mooney, H. A., 1990: The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21:423–447.10.1146/annurev.es.21.110190.002231
  7. Colpaert, J. V., Van Tichelen, K. K., Van Assche, J. A., Van Laere, A., 1999: Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytologist, 143:589–597.10.1046/j.1469-8137.1999.00471.x33862896
  8. de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., Van Oijen, M. et al., 2009: The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258:1814–1823.10.1016/j.foreco.2009.02.034
  9. Deckmyn, G., Verbeeck, H., De Beeck, M. O., Vansteenkiste, D., Steppe, K., Ceulemans, R., 2008: ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modelling, 215:345–368.10.1016/j.ecolmodel.2008.04.007
  10. Deckmyn, G., Mali, B., Kraigher, H., Torelli, N., Ceulemans, R., 2009: Using the process-based stand model ANAFORE including Bayesian optimisation to predict wood quality and quantity and their uncertainty in Slovenian beech. Silva Fennica, 43:523–534.10.14214/sf.204
  11. Deckmyn, G., Campioli, M., Muys, B., Kraigher, H., 2011: Simulating C cycles in forest soils: Including the active role of micro-organisms in the ANAFORE forest model. Ecological Modelling, 222:1972–1985.10.1016/j.ecolmodel.2011.03.011
  12. Deckmyn, G., Meyer, A., Smits, M. M., Ekblad, A., Grebenc, T., Komarov, A. et al., 2014: Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Canadian Journal of Forest Research, 44:535–553.10.1139/cjfr-2013-0496
  13. Dzotsi, K. A., Jones, J. W., Adiku, S. G. K., Naab, J. B., Singh, U., Porter, C. H. et al., 2010: Modeling soil and plant phosphorus within DSSAT. Ecological Modelling, 221:2839–2849.10.1016/j.ecolmodel.2010.08.023
  14. Farquhar, G. V., von Caemmerer, S. V., Berry, J. A., 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149:78–90.10.1007/BF00386231
  15. Fernández-Martínez, M., Vicca, S., Janssens, I. A., Campioli, M., 2014: Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 4:471–476.10.1038/nclimate2177
  16. FFCT, 2013: Minutes of the 13th ICP Forest EP Foliage and Litterfall meeting. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests of UN/ECE (ICP Forests), Ljubljana, Slovenia.
  17. Franklin, O., Naesholm, Hoegberg, P., Hoegberg, M. N., 2014: Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist, 203:657–666.10.1111/nph.12840
  18. Gérard, F., Blitz-Frayret, C., Hinsinger, P., Pagès, L. 2017: Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant and Soil, 413:161–180.
  19. Grigal, D. F., 2000: Effects of extensive forest management on soil productivity. Forest Ecology and Management, 138:167–185.10.1016/S0378-1127(00)00395-9
  20. Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J. P. et al., 2011: Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant and Soil, 348:29–61.10.1007/s11104-011-0903-y
  21. Horemans, J. A., Bosela, M., Dobor, L., Barna, M., Bahyl, J., Deckmyn, G. et al., 2016: Variance decomposition of stem biomass increment predictions for European beech: contribution of selected sources of uncertainty. Forest Ecology and Management, 361:46–55.10.1016/j.foreco.2015.10.048
  22. Jacobsen, C., Rademacher, P. Meesenburg, H., Meiwes, K. J., 2003: Gehalte chemischer Elemente in den Baumkompartimenten: Literaturstudie und Datensammlung. Göttingen, Selbstverlag des Forschungszentrums Waldökosysteme der Universität Göttingen, 88 p.
  23. Jeppu, G. P., Clement, T. P., 2012: A modified Langmuir- Freundlich isotherm model for simulating pHdependent adsorption effects. Journal of Contaminant Hydrology, 129:46–53.10.1016/j.jconhyd.2011.12.00122261349
  24. Jonard, M., Augusto, L., Hanert, E., Achat, D. L., Bakker, M. R., Morel, C. et al., 2010: Modeling forest floor contribution to phosphorus supply to maritime pine seedlings in two-layered forest soils. Ecological Modelling, 221:927–935.10.1016/j.ecolmodel.2009.12.017
  25. Jonard, M., Legout, A., Nicolas, M., Dambrine, E., Nys, C., Ulrich, E. et al., 2012: Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Global Change Biology, 18:711–725.10.1111/j.1365-2486.2011.02550.x
  26. Jonard, M., Fürst, A., Verstraeten, A., Thimonier, A., Timmermann, V., Potočić, N. et al., 2015: Tree mineral nutrition is deteriorating in Europe. Global Change Biology, 21:418–430.10.1111/gcb.1265724920268
  27. Jones, C. A., Cole, C. V., Sharpley, A. N., Williams, J. R., 1984: A simplified soil and plant phosphorus model: I. Documentation. Soil Science Society of America Journal, 48:800–805.10.2136/sssaj1984.03615995004800040020x
  28. Jongbloed, R. H., Clement, J. M. A. M., Borst-Pauwels, G. W. F. H., 1992: Effects of aluminium and pH on growth and potassium uptake by three ectomycorrhizal fungi in liquid culture. Plant and Soil, 140:157–165.10.1007/BF00010593
  29. Landsberg, J. J., Kaufmann, M. R., Binkley, D., Isebrands, J., Jarvis, P. G., 1991: Evaluating progress toward closed forest models based on fluxes of carbon, water and nutrients. Tree Physiology, 9:1–15.10.1093/treephys/9.1-2.114972853
  30. Lindahl, B. D., Tunlid, A., 2014: Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytologist, 205:1443–1447.10.1111/nph.1320125524234
  31. Marschner, H., Kirkby, E. A., Cakmak, I., 1996: Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. Journal of Experimental Botany, 47:1255–1263.10.1093/jxb/47.Special_Issue.125521245257
  32. McKay, M. D., Beckman, R. J., Conover, W. J., 1979: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21:239–245.10.1080/00401706.1979.10489755
  33. McCormack, M. L., Crisfield, E., Raczka, B., Schnekenburger, F., Eissenstat, D. M., Smithwick, E. A., 2015: Sensitivity of four ecological models to adjustments in fine root turnover rate. Ecological modelling, 297: 107–117.10.1016/j.ecolmodel.2014.11.013
  34. Meerts, P., 2002: Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science, 59:713–722.10.1051/forest:2002059
  35. Meyer, A., Grote, R., Butterbach-Bahl, K., 2012: Integrating mycorrhiza in a complex model system - effects on ecosystem C and N fluxes. European Journal of Forest Research, 131:1809–1831.10.1007/s10342-012-0634-5
  36. Mohren, G. M. J., Van Den Burg, J., Burger, F. W., 1986: Phosphorus deficiency induced by nitrogen input in Douglas fir in the Netherlands. Plant and Soil, 95:191–200.10.1007/BF02375071
  37. Mälkönen, E., 1976: Effect of whole-tree harvesting on soil fertility. Silva Fennica, 3:157–164.10.14214/sf.a14790
  38. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., McMurtrie, R. E., 2010: CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences, 107:19368–19373.10.1073/pnas.1006463107
  39. Nowak, R. S., Ellsworth, D. S., Smith, S. D., 2004: Functional responses of plants to elevated atmospheric CO2–do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162:253–280.10.1111/j.1469-8137.2004.01033.x
  40. Orwin, K. H., Kirschbaum, M. U. F., St John, M. G., Dickie, I. A., 2011: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters, 14:493–502.10.1111/j.1461-0248.2011.01611.x
  41. Overloop, S., Meiresonne, L., 1999: Basiskarakteristieken van het proefvlak Brasschaat, domeinbos de Inslag. Mededelingen van het Instituut voor Bosbouw en Wildbeheer, 1:11–21.
  42. Parton, W. J., Stewart, J. W., Cole, C. V., 1988: Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 5:109–131.10.1007/BF02180320
  43. Peñuelas, J., Sardans, J., Rivas-ubach, A., Janssens, I. A., 2012: The human-induced imbalance between C, N and P in Earth‘s life system. Global Change Biology, 18:3–6.10.1111/j.1365-2486.2011.02568.x
  44. Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., Van Der Velde, M., Bopp, L. et al., 2013: Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4:2934.10.1038/ncomms3934
  45. Probert, M. E., Keating, B. A., 2000: What soil constraints should be included in crop and forest models? Agriculture, Ecosystems and Environment, 82:273–281.10.1016/S0167-8809(00)00231-0
  46. Rao, I. M., Pessarakli, M., 1996: The role of phosphorus in photosynthesis. In: Pessarakli, M. (ed.): Handbook of Photosynthesis, Marcel Dekker, Inc., New York, p. 173–194.
  47. Read, D., Perez-Moreno, J., 2003: Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist, 157:475–492.10.1046/j.1469-8137.2003.00704.x33873410
  48. Read, D. J., Leake, J. R., Perez-Moreno J., 2004: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 82:1243–1263.10.1139/b04-123
  49. Reich, P. B., Oleksyn, J., Wright, I. J., 2009: Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160:207–212.10.1007/s00442-009-1291-319212782
  50. Roskams, P., Neirynck, J., 1999: De voedingstoestand van Grove den (Pinus sylvestris L.) in het level II-proefvlak in Brasschaat. Mededelingen van het Instituut voor Bosbouw en Wildbeheer, 1:23–42.
  51. Runyan, C. W., P. D‘Odorico, 2012: Hydrologic controls on phosphorus dynamics: A modeling framework. Advances in Water Resources 35:94–109.10.1016/j.advwatres.2011.10.004
  52. Schnepf, A., Roose, T., 2006: Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytologist, 171:669–682.10.1111/j.1469-8137.2006.01771.x16866967
  53. Shah, F., Nicolás, C., Bentzer, J., Ellström, M., Smits, M., Rineau, F. et al., 2016: Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist, 209:1705–1719.10.1111/nph.13722506109426527297
  54. Toman, M. A., Ashton, P. M. S., 1996: Sustainable forest ecosystems and management: a review article. Forest Science, 42:366–377.
  55. Van Tichelen, K. K., Colpaert, J. V., 2000: Kinetics of phosphate absorption by mycorrhizal and non-mycorrhizal Scots pine seedlings. Physiologia Plantarum, 110:96–103.10.1034/j.1399-3054.2000.110113.x
  56. Vereecken, H., Schnepf, A., Hopmans, J. W. et al., 2016: Modeling soil processes: review, key challenges and new perspectives. Vadose Zone Journal, 15:1–57.10.2136/vzj2015.09.0131
  57. Vitousek, P. M., Porder, S., Houlton, B. Z., Chadwick, O. A., 2010: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications, 20:5–15.10.1890/08-0127.120349827
  58. Wallander, H., Göransson, H., Rosengren, U., 2004: Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia, 139:89–97.10.1007/s00442-003-1477-z14727173
  59. Yanai, R. D., 1992: Phosphorus budget of a 70-yearold northern hardwood forest. Biogeochemistry, 17:1–22.10.1007/BF00002757
  60. Zhenh, W., Morris, E. K., Rillig, M. C., 2014: Ectomycorrhizal fungi in association with Pinus sylvestris seedlings promote soil aggregation and soil water repellency. Soil Biology en Biochemistry, 78:326–331.10.1016/j.soilbio.2014.07.015
  61. Zinke, P. J., 1962: The pattern of influence of individual forest trees on soil properties. Ecology, 43:130–133.10.2307/1932049
DOI: https://doi.org/10.1515/forj-2017-0037 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 79 - 95
Published on: May 14, 2018
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Michiel F. Bortier, Enrique Andivia, José G. Genon, Tine Grebenc, Gaby Deckmyn, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.