Have a personal or library account? Click to login
Optimization of a forest harvesting set based on the Queueing Theory: Case study from Karelia Cover

Optimization of a forest harvesting set based on the Queueing Theory: Case study from Karelia

Open Access
|Feb 2016

References

  1. Ahiska, S. S., Kurtul, E., 2014: Modeling and analysis of a product substitution strategy for a stochastic manufacturing/remanufacturing system. Computers & Industrial Engineering, 72:1–11.
  2. Atencia, I., Pechinkin, A. V., 2013: A discrete-time queueing system with optional LCFS discipline. Annals of Operations Research, 202:3–17.
  3. Atencia, I., 2014: A discrete-time system with service control and repairs. International Journal of Applied Mathematics and Computer Science, 24:471–484.
  4. Atencia, I., Fortes, I., Pechinkin, A., Sanchez, S., 2013: A discrete-time queueing system with different types of displacement. In Proceedings of the 27th European Conference on Modelling and Simulation, Alesund, Norway, p. 558–564.
  5. Bohle, C., Maturana, S., Vera, J., 2010: A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200:245–252.
  6. Bont, L. G., Heinimann, H. R., Richard, L. C., 2012: Concurrent optimization of harvesting and road network layouts under steep terrain. Annals of Operations Research, 232:41–64.
  7. Buzacott, J. A., Shanthikumar, J. G., 1993: Stochastic Models of Manufacturing Systems. Englewood Cliffs, Prentice Hall, 553 p.
  8. Carlsson, D., Rönnqvist, M., 2005: Supply chain management in forestry: case studies at Södra Cell AB. European Journal of Operational Research, 163:589–616.
  9. Chauhan, S. S., Frayret, J.-M., LeBel, L. G., 2009: Multi-commodity supply network planning in the forest supply chain. European Journal of Operational Research, 196:688–696.
  10. Chung, W., Stückelberger, J., Aruga, K., Cundy, T., 2008: Forest road network design using a trade-off analysis between skidding and road construction costs. Canadian Journal of Forest Research, 38:439–448.
  11. Constantino, M., Martins, I., Borges, J. G., 2008: A new mixed-integer programming model for harvest scheduling subject to maximum area restrictions. Operations Research, 56:542–551.
  12. Dems, A., Rousseau, L., Frayret, J., 2012: Effects of different cutto-length harvesting structures on the economic value of a wood procurement planning problem. Annals of Operations Research, 232: 65–86.
  13. Epstein, R., Weintraub, A., Sapunar, P., Nieto, E., Sessions, J. B., Sessions, J., 2006: A combinatorial heuristic approach for solving real-size machinery location and road design problems in forestry planning. Operations Research, 54:1017–1027.
  14. Flisberg, P., Forsberg, M., Rönnqvist, M., 2007: Optimization based planning tools for routing of forwarders at harvest area. Canadian Journal of Forest Research, 37:2153–2163.
  15. Gerasimov, Y., Sokolov, A., Syunev, V., 2011: Optimization of industrial and fuel wood supply chain associated with cut-to-length harvesting. Sistemy. Metody. Technologii, 11:118–124.
  16. Glover, F., Luguna, M., 1997: Tabu Search. MA, USA, Kluwer Academic Publishers, 382 p.
  17. Goycoolea, M., Murray, A. T., Barahona, F., Epstein, R., Weintraub, A., 2005: Harvest scheduling subject to maximum area restrictions: exploring exact approaches. Operations Research, 53:490–500.
  18. Guy, L., Richard, M., 2009: Manufacturing systems modeling and Analysis. Springer-Verlag Berlin Heidelberg, 327 p.
  19. Heinimann, H. R., 1998: A computer model to differentiate skidder and cable-yarder based road network concepts on steep slopes. Journal of Forest Research (Japan), 3:1–9.
  20. Houtum, G. J., Kranenburg, B., 2015: Spare Parts Inventory Control under System Availability Constraints. New York, Springer US, 227 p.
  21. Jakimovich, S. B., Teterin, M. A., 2007: Transporting stocks logistics. Trans & MOUTAUTO’07: XIV international scientific-technical conference materials – Ruse, Bulgaria, p. 68–72.
  22. Jena, S. D., Cordeau, J., Gendron, B., 2012: Modeling and solving a logging camp location problem. Annals of Operations Research, 232:151–177.
  23. Melo, M., Nickel, S., Saldanha da Gama, F., 2005: Dynamic multi-commodity capacitated facility location: amathematical modeling framework for strategic supply chain planning. Computers & Operations Research, 33:181–208.
  24. Moharana, U. C., Sarmah, S. P., 2015: Determination of optimal kit for spare parts using association rule mining. International Journal of System Assurance Engineering and Management, 6:238–247.
  25. Morozov, E., Fiems, D., Bruneel, H., 2011. Stability analysis of multiserver discrete-time queueing systems with renewal-type server interruptions. Performance Evaluation, 68:1261–1275.
  26. Palma, C. D., Nelson, J. D., 2009: A robust optimization approach protected harvest scheduling decisions against uncertainty. Canadian Journal of Forest Research, 39:342–355.
  27. Peeters, D., Antunes, A. P., 2001: On solving complex multi-period location models using simulated annealing. European Journal of Operational Research, 130:190–201.
  28. Rönnqvist, M., 2003: Optimization in forestry. Mathematical Programming, 97:267–284.
  29. Sessions, J., Boston, K., Hill, R., Stewart, R., 2005: Log sorting location decisions under uncertainty. Forest Products Journal, 55:53–57.
  30. Seyedhoseini, S. M., Rashid, R., Kamalpour, I., Zangeneh, E., 2015: Application of queuing theory in inventory systems with substitution flexibility. J Ind Eng Int, 11:37–44.
  31. Shanthikumar, J. G., Yao, D. D., Zijm, W. H. M., 2003: Stochastic modeling and optimization of manufacturing systems and supply chains, Springer US, 411 p.
  32. Shegelman, I., Skripnik, V., Pladov, A., Kochanov, A.,2003: Modelirovanie dviženija lesovoznych avtopoezdov na PEVM. Petrozavodsk, PetrSU, 234 p.
  33. Shulman, A., 1991: An algorithm for solving dynamic capacitated plant location problems with discrete expansion sizes. Operations Research, 39:423–436.
  34. Song, D., 2013: Optimal control and optimization of stochastic supply chain systems. London, Springer, 271 p.
  35. Spanjers, L., Ommeren, J. C. W., Zijm, W. H. M., 2006: Closed loop two-echelon repairable item systems: Stochastic Modeling of Manufacturing Systems. Springer Berlin Heidelberg, p. 223–252.
  36. Troncoso, J., Garrido, R., 2005. Forestry production and logistics planning: an analysis using mixedinteger programming. Forest Policy and Economics, 7:625–633.
  37. Vinck, B. Bruneel, H., 2006: System delay versus system content for discrete-time queueing systems subject to server interruptions. European Journal of Operational Research, 175:362–375.
  38. Voronin, A., Kuznetsov, V., 2000: Matematičeskie modeli i metody v planirovanii i upravlenii predprijatiem CP Petrozavodsk, PetrSU, 256 p.
  39. Wei, R., Murray, A. T., 2012: Spatial uncertainty in harvest scheduling. Annals of Operations Research, 232:275–289.
DOI: https://doi.org/10.1515/forj-2015-0029 | Journal eISSN: 2454-0358 | Journal ISSN: 2454-034X
Language: English
Page range: 211 - 220
Published on: Feb 29, 2016
Published by: National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Ilya Shegelman, Pavel Budnik, Evsey Morozov, published by National Forest Centre and Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.