Have a personal or library account? Click to login
Assessment of Predictor Importance with the Example of the Real Estate Market Cover

Assessment of Predictor Importance with the Example of the Real Estate Market

By: Mariusz Kubus  
Open Access
|Apr 2017

Abstract

Regression methods can be used for the valuation of real estate in the comparative approach. However, one of the problems of predictive modelling is the presence of redundant or irrelevant variables in data. Such variables can decrease the stability of models, and they can even reduce prediction accuracy. The choice of real estate’s features is largely determined by an appraiser, who is guided by his/her experience. Still, the use of statistical methods of a feature selection can lead to a more accurate valuation model. In the paper we apply regularized linear regression which belongs to embedded methods of a feature selection. For the considered data set of real estate land designated for single-family housing we obtained a model, which led to a more accurate valuation than some other popular linear models applied with or without a feature selection. To assess the model’s quality we used the leave-one-out cross-validation.

DOI: https://doi.org/10.1515/foli-2016-0023 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 29 - 39
Submitted on: Nov 15, 2015
Accepted on: Nov 16, 2016
Published on: Apr 4, 2017
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Mariusz Kubus, published by University of Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.