Have a personal or library account? Click to login
Geometric Method of Determining Hazard for the Continuous Survival Function Cover

Geometric Method of Determining Hazard for the Continuous Survival Function

Open Access
|Dec 2015

References

  1. Aalen, O.O., Borgen, O. & Gjessing H.K. (2008). Survival and Event History Analysis. A Process Point of View. New York: Springer.10.1007/978-0-387-68560-1
  2. Andersen, P.K., Borgan, Ø, Gill, R.D. & Keiding, N. (1993). Statistical Models Based on Counting Processes. New York: Springer.10.1007/978-1-4612-4348-9
  3. Bieszk-Stolorz, B. (2013). Analiza historii zdarzeń w badaniu bezrobocia. Szczecin: Volumina. pl.
  4. Collett, D. (2003). Modelling Survival Data in Medical Research. Florida: Chapman and Hall.
  5. Cox, D.R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B (Methodological), 34: 187-220.
  6. Grambsch, P.M. & Thernau, T.M. (1994). Proportional hazards test and diagnostics based on weighted residuals. Biometrika, 81: 515-526.
  7. Huzurbazar, A.V. (2005). Flowgraph Models for Multistate Time-to-Event-Data. New Jersey: Wiley.
  8. Hosmer, D.W. & Lemeshow, S. (1999). Applied Survival Analysis. Regression Modeling of Time to Event Data. New York: Wiley.
  9. Kalbfleisch, J.D. & Prentice, R.L. (2002). The statistical analysis of failure time data. 2nd Edition. New York: Wiley.10.1002/9781118032985
  10. Klein, J.P. & Moeschberger, M.L. (2003). Survival Analysis. Techniques for Censored and Truncated Data. 2nd Edition. New York: Springer.10.1007/b97377
  11. Kleinbaum, D.G. & Klein, M. (2005). Survival Analysis. 2nd Edition, New York: Springer.10.1007/0-387-29150-4
  12. Kraus, D. (2007). Data-driven smooth tests of the proportional hazards assumption. Lifetime Data Analysis, 13: 1-16.
  13. Kvaløy, J.T. & Neef, L.R. (2004). Tests for the Proportional Intensity Assumption Based on the Score Process. Lifetime Data Analysis, 10: 139-157.
  14. Lin, D.Y., Wei, L.J. & Ying, Z. (1993). Checking the Cox model with cumulative sums of the martingale-based residuals. Biometrika, 80: 557-572.
  15. Machin, D., Cheung, Y.B. & Parmar, M.K. (2006). Survival Analysis. A practical Approach. 2nd Edition. Chichester: Wiley.10.1002/0470034572
  16. O’Quigley, J. & Pessione, F. (1989). Score tests for homogeneity effects in the proportional hazards model. Biometrics, 45: 135-144.
  17. O’Quigley, J. (2008). Proportional Hazard Regression, New York: Springer.
  18. Scheike, T. & Martinussen, T. (2004). On estimation and tests of time-varying effects in the proportional hazards model. Scandinavian Journal of Statistics, 31: 51-62.
  19. Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69: 239-241.
  20. Selvin, S. (2008). Survival Analysis for Epidemiologic and Medical Research. A Practical Guide. Cambridge: Cambridge University Press.10.1017/CBO9780511619809
  21. Wei, L.J. (1984). Testing goodness of fit for the proportional hazards model with censored observations. Journal of the American Statistical Association, 79: 649-652.
DOI: https://doi.org/10.1515/foli-2015-0031 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 22 - 33
Submitted on: Jan 23, 2015
Accepted on: Apr 29, 2015
Published on: Dec 30, 2015
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Beata Bieszk-Stolorz, published by University of Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.