Have a personal or library account? Click to login
Application Of Rating Scale Model In Conversion Of Rating Scales' Points To The Form Of Triangular Fuzzy Numbers Cover

Application Of Rating Scale Model In Conversion Of Rating Scales' Points To The Form Of Triangular Fuzzy Numbers

Open Access
|Jun 2015

References

  1. Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561–573. DOI: 10.1007/BF02293814.10.1007/BF02293814
  2. Bojadziev, M. & Bojadziev, G. (1995). Fuzzy Sets, Fuzzy Logic, Applications. Singapore: World Scientific Publishing.10.1142/2867
  3. Carrasco, R.A., Munoz-Leiva, F., Sánchez-Fernández, J. & Liébana-Cabanillas, F.J. (2012). A model for the integration of e-financial services questionnaires with SERVQUAL scales under fuzzy linguistic modeling. Expert Systems with Applications, 39, 1535–1547. DOI: 10.1016/j.eswa.2012.03.055.10.1016/j.eswa.2012.03.055
  4. Charles, V., Kumar, M. & Suggu, S. (2013). Adapting Fuzzy Linguistic Servqual Model: A Comparative Analysis of Bank Services. Middle-East Journal of Scientific Research, 18 (8), 1119–1132. DOI: http://dx.doi.org/10.7835/ccwp-2012-09-0008.
  5. Chien, Ch.-J. & Tsai, H.-H. (2000). Using fuzzy number to evaluate perceived service quality. Fuzzy Sets and Systems, 116 (2), 289–300. DOI: 10.1016/S0165-0114(98)00239-5.10.1016/S0165-0114(98)00239-5
  6. DeMars, Ch. (2010). Item Response Theory. Oxford: Oxford University Press.10.1093/acprof:oso/9780195377033.001.0001
  7. de Sáa, S.R., Gil, M.Á., Garcia, M.T.L. & Lubiano, M.A. (2013). Fuzzy Rating vs. Fuzzy Conversion Scales: An Empirical Comparison through the MSE. In: Synergies of Soft Computing and Statistics for Intelligent Data Analysis, eds. R. Kruse, M.R. Berthold, M. Moewes, M.A. Gil, P. Grzegorzewski, O. Hryniewicz (pp. 135–144). Berlin Heidelberg: Springer.
  8. Embretson, S.E. & Reise, S.P. (2000). Item Response Theory for Psychologists. Makwah: Lawrence Erlbaum Associates.
  9. Erdoğan, M., Bilişik, Ö.N., Kaya, İ. & Baraçh, H. (2013). A customer satisfaction model based on fuzzy TOPSIS and SERVQUAL methods. Lecture Notes in Management Science, 5, 74–83. DOI: 10.1080/14783363.2013.809942.10.1080/14783363.2013.809942
  10. Farkhondezadeh, A., Rakhsha, S.H., Fek, M.R., Zarafshan, H., Cheramy, F. & Yahdy, E. (2013). Identification and ranking of effective factors of marketing (controllable) to receive the services from free zone with MADM approach. European Online Journal of Natural and Social Sciences, 2 (3), 507–517.
  11. Hambleton, R.K., Swaminathan, H. & Rogers, H.J. (1991). Fundamentals of Item Response Theory. Newbury Park, CA: Sage Publications.
  12. Jefmański, B. (2011). Nowe podejście w pomiarze opinii respondentów z zastosowaniem skal porządkowych i elementów teorii zbiorów rozmytych – charakterystyka wybranych aspektów metodologicznych. Prace Naukowe UE we WrocŁawiu, 236, 184–191.
  13. Kandel, A. (1982). Fuzzy techniques in pattern recognition. New York: John Wiley & Sons.
  14. Linacre, J.M. (2010). Transitional categories and usefully disordered thresholds. Online Educational Research Journal, 1–10.
  15. Liu, X., Zeng, X., Xu, Y. & Koehl, L. (2008). A fuzzy model of customer satisfaction index in e-commerce. Mathematics and Computers in Simulation, 77 (5–6), 512-521. DOI: 10.1016/j.matcom.2007.11.017.10.1016/j.matcom.2007.11.017
  16. Ostini, R. & Nering, M. (2006). Polytomous Item Response Theory Models. Thousand Oaks: Sage Publications.10.4135/9781412985413
  17. Pagani, L. & Zanarotti, M.C. (2010). Some Uses of Rasch Models Parameters in Customer Satisfaction Data Analysis. Quality Technology & Quantitative Management, 7 (1), 83–95.10.1080/16843703.2010.11673220
  18. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Danish Institute for Educational Research (Expanded edition, University of Chicago Press, 1980).
  19. Sagan, A. (2005). Ocena ekwiwalencji skal pomiarowych w badaniach międzykulturowych. Zeszyty Naukowe Akademii Ekonomicznej w Krakowie, 659, 59–73.
  20. Zimmermann, H.-J. (2001). Fuzzy set theory and its applications. Boston: Kluwer Academic Publishers.10.1007/978-94-010-0646-0
DOI: https://doi.org/10.1515/foli-2015-0010 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 7 - 18
Submitted on: Jul 5, 2014
|
Accepted on: Dec 1, 2014
|
Published on: Jun 3, 2015
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Bartłomiej Jefmański, published by University of Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.