[1] Ali, N., Peebles, D., 2013. Reactivity effects of concurrent verbalisation during a graph comprehension task. In: The annual meeting of the Cognitive Science Society. COGSCI 2013, pp.1720 - 1725.
[2] Allal-Chérif, O., Bidan, M. and Makhlouf, M., 2016. Using serious games to manage knowledge and competencies: The seven-step development process. Information Systems Frontiers, pp.1-11.10.1007/s10796-016-9649-7
[3] Antonova, A., Stefanov, K., 2011. Applied Cognitive Task Analysis in the Context of Serious Games Development. In: D. Dicheva, ed., et al., 2011. Software, Services & Semantic Technologies. AISC 101, Springer-Verlag Berlin, pp.175–182.10.1007/978-3-642-23163-6_25
[4] Boiman, O., Shechtman, E. and Irani, M., 2008. In defense of nearest-neighbor based image classification, Computer Vision and Pattern Recognition. In: CVPR 2008, IEEE Conference on, IEEE.10.1109/CVPR.2008.4587598
[6] Bosch, A., Zisserman, A., Munoz, X., 2007. Image classification using random forests and ferns. In: Computer Vision 2007, ICCV 2007, IEEE 11th International Conference on IEEE.10.1109/ICCV.2007.4409066
[7] Boyle, E.A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., Lim, T., Ninaus, M., Ribeiro, C., Pereira, J., 2016. An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers & Education, 94, pp.178-192.10.1016/j.compedu.2015.11.003
[9] Christoudias, C. M., Urtasun, R., Darrell, T., 2008. Unsupervised feature selection via distributed coding for multi-view object recognition. In: Computer Vision and Pattern Recognition, CVPR 2008, Conference on IEEE.10.1109/CVPR.2008.4587615
[11] Dudek, A., Patalas-Maliszewska, J., 2016. IT tool for knowledge management support in the service department in the manufacturing company – a case study. In: R. Knosala, ed. Innovation in Management and Production Engineering. Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, Vol 2, pp.35-46.
[12] Dzwiarek, M., Luczak, A., 2008. Application prospects of the augmented reality technology for improving safety of machine operators. In: INTECH Open Access Publisher.10.5772/5877
[13] Faust, B., 2007. Implementation of tacit knowledge preservation and transfer methods. In: International Conference on Knowledge Management in Nuclear Facilities. Vienna, Austria.
[14] Furui, S., 2005. 50 Years of Progress in Speech and Speaker Recognition Research. ECTI transactions on computer and information technology, 1(2).10.37936/ecti-cit.200512.51834
[15] Gałaj, J., Oleksy, M., 2013. Przegląd hybrydowych modeli pożaru (Overview of the hybrid models of fire). Bezpieczeństwo i Technika Pożarnicza (Safety & Fire Technique), 32 (4).
[16] Gonzalez-Franco, M., Cermeron, J., Li, K., Pizarro, R., Thorn, J., Hannah, P. and Bermell-Garcia, P., 2016. Immersive Augmented Reality Training for Complex Manufacturing Scenarios. arXiv preprint arXiv:1602.01944.
[17] Gomółka, Z., 2008. Identyfikacja mówcy z wykorzystaniem współczynników predykcji liniowej (The Mechanism of Linear Pprediction in the Task Speaker Identification). Technical News, (2008/1), pp.63-66.
[19] Gourova, E., Toteva, K. and Todorova Y., 2012. Audit of knowledge flows and critical business processes. In: Proceedings of the 17th European Conference on Pattern Languages of Programs (EuroPLoP’12). New York, NY, pp.1-10.10.1145/2602928.2603077
[21] Govaerts, M.J.B., Van de Wiel, M. W.J., Schuwirth, L.W.T., Van der Vleuten, C.P.M., Muijtjens, A.M.M., 2012. Workplace-based assessment: raters’ performance theories and constructs. Advances in Health Sciences Education Theory and Practice, 18(3), pp.375-396.10.1007/s10459-012-9376-x372845622592323
[22] Grad, L., 2007. Kompresja stratna dźwięku. In: P. Sienkiewicz, ed., Zeszyt naukowy nr 2 (Scientific notebook number 2). Warsaw: Warszawska Wyższa Szkoła Informatyki (Warsaw School of Computer Science), pp.39-58.
[23] Hernes, M., Maleszka, M., Nguyen, N.T., Bytniewski, A., 2015. The automatic summarization of text documents in the Cognitive Integrated Management Information System. In: Computer Science and Information Systems (FedCSIS), Federated Conference on IEEE, pp.1387-1396.10.15439/2015F188
[27] Jelinek, F., 1985. The development of an experimental discrete dictation recognizer. Proceedings of the IEEE, 73(11), pp.1616-1624.10.1109/PROC.1985.13343
[28] Kambhatla, N., Zitouni, I., 2013. Systems and methods for automatic semantic role labeling of high morphological text for natural language processing applications. U.S. Patent No. 8,527,262.
[29] Karkula, M., 2014. Badania symulacyjne procesów transportowych realizowanych w obiektach logistycznych (Simulation Studies of Transport Processes in Logistics Facilities). Logistyka, 4 (2), pp.1971-1980.
[30] Kale, R., Bhabad, S.S., 2015. Speech Recognition of Articulatory Handicapped People By Using LPC. International Journal Of Scientific Research And Education, 3 (02), pp.2893-2899.
[31] Kompanec, L., Kubanek, M., 2002. Specyfika wykorzystania ukrytych modeli markowa przy rozpoznawaniu mowy polskiej (The specificity of the use of hidden Markov models using speech recognition Polish). Informatyka Teoretyczna i Stosowana, 2 (3), pp.45-56.
[32] Kwasek, A., 2016. IT Tools Used in the Management of New Model of Economy, the Knowledge-Based Economy. Kwartalnik Naukowy Uczelni Vistula, 1 (47), pp.94-108.
[34] Lazebnik, S., Schmid, C. and Ponce, J., 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Computer Vision and Pattern Recognition. 2006 IEEE Computer Society Conference.
[36] Leśnik, M., Dobrowolski D., 2016. Zarządzanie wiedzą jako proces. In: R. Knosala ed., 2016. Innowacje w zarządzaniu i inżynierii produkcji. Opole: Wyd. Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, pp.85-96.
[37] Li, F.-F., Perona, P., 2005. A bayesian hierarchical model for learning natural scene categories. In: Computer Vision and Pattern Recognition, CVPR 2005, IEEE Computer Society Conference.
[38] Lin, T.J., Duh, H.B.L., Li, N., Wang, H.Y. and Tsai C.C., 2013. An investigation of learners' collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Computers & Education, 68, pp.314-321.10.1016/j.compedu.2013.05.011
[40] Mermon, A., 2011. Sieci Bayesa w rozpoznawaniu mowy (Bayes networks used in application to speech signal recognition). Pomiary automatyka Robotyka, 12/2011.
[41] Mietła, A., Iwaniec M., 2010. Praktyczne aspekty wykorzystywania systemów rozpoznawania mowy opartych na HMM. Modelowanie Inżynierskie - Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej, 9 (40), pp.171 - 178.
[43] Pa, N. C., Taheri, L. and Abdullah, R., 2012. A Survey on Approaches in Knowledge Audit in Organization. Asian Transaction on Computers, 2 (5), pp.1-8.
[44] Pawlaczyk, L., Bosky, P., 2009. Skrybot – A System for Automatic Speech Recognition of Polish Language. Man-Machine Interactions in Advances in Intelligent and Soft Computing, 59, pp.381-387.10.1007/978-3-642-00563-3_40
[45] Piotrowska, A., 2012. Wiedza jawna i niejawna jako zasób decyzyjny w zarządzaniu personelem (Explicit and implicit knowledge as a resource decision-making in personnel management). In: A. Grzegorczyk ed., Procesy decyzyjne w warunkach niepewności. Warszawa: Wyższa Szkoła Promocji, pp.79-95.
[46] Przepiórkowski, A., Bańko, M., Górski R. and Lewnadowska-Tomaszczyk B., 2012. Narodowy Korpus Języka Polskiego (National Corpus of Polish Language). Warszawa: Wydawnictwo Naukowe PWN.
[47] Przybysz, P., Kasprzak, W., 2012. Rozpoznawanie zdań w sygnale mowy z wykorzystaniem modelu HMM (Recognition of sentences in the speech signal using HMM model). Raport IAiIS PW Nr 12-05, Warszawa.
[48] Ptocoki, A., Łukasik, P., 2014. Wybrane metody komunikacji ukierunkowane na wykorzystanie wiedzy w organizacji (Selected methods of communication directed to the use of knowledge in the organization). In: A. Stabryła, S. Wawak, ed., 2014. Problemy zarządzania organizacjami w społeczeństwie informacyjnym. Kraków: Mfiles.
[50] Ragsdell, G., Probets S. and Ahmed G., 2013. Knowledge audit: findings from a case study in the energy sector. In: 14th European Conference on Knowledge Management. Kaunus University of Technology, Lithuania, 5-6 September 2013, pp.584-593.
[51] Salmon, K., Pipe, M. E., Malloy, A. and Mackay, K., 2012. Do Non-Verbal Aids Increase the Effectiveness of 'Best Practice' Verbal Interview Techniques? An Experimental Study. Applied Cognitive Psychology, 26 (3), pp.370-380.10.1002/acp.1835
[52] Seager, W., Ruskov, M., Sasse, M.A. and Oliveira, M., 2011, Eliciting and modelling expertise for serious games in project management. Entertainment Computing, pp.75–80.10.1016/j.entcom.2011.01.002
[54] Shomali, A., Kapusta, M. and Gajer, M., 1999. Zastosowanie niejawnych modeli Makowa w systemach automatycznego rozpoznawania mowy (The use of HMM in automatic speech recognition). Elektrotechnika i Elektronika, pp.89-99.
[56] Yang, J., Yu K., Gong Y., Huang, T., 2009. Linear spatial pyramid matching using sparse coding for image classification. In: Computer Vision and Pattern Recognition Conference.10.1109/CVPR.2010.5540018
[59] Yang, J., Yu, K., Gong, Y. and Huang, T., 2009. Linear spatial pyramid matching using sparse coding for image classification. In: Computer Vision and Pattern Recognition Conference.
[60] Yang, Y., Liu, X., 1998. A re-examination of text categorization methods. In: ACM SIGIR Conference on Research and Development in Information Retrieval. New York.10.1145/312624.312647
[61] Zieliński, M., 2015. Personalne warunki tworzenia inteligentnej organizacji (Personnel conditions of creation of intelligent organization). Scientific Papers of Silesian University of Technology, 86 (1946).
[64] Żelazko, P., Ziółko, B., Jadczyk, T. and Skurzok, D., 2015. AGH corpus of Polish speech. Lang Resources & Evaluation, early access.10.1007/s10579-015-9302-y