Have a personal or library account? Click to login

Computational Intelligence for Estimating Cost of New Product Development

Open Access
|Mar 2016

References

  1. [1] Cooper R., Edgett S., 2008. Maximizing productivity in product innovation. Research Technology Management, 51(2), pp.47-58.10.1080/08956308.2008.11657495
  2. [2] Chan S.L., Ip W.H., 2011. A dynamic decision support system to predict the value of customer for new product development. Decision Support Systems, Vol. 52, pp.178-188.10.1016/j.dss.2011.07.002
  3. [3] Spalek S., 2013. Improving industrial engineering performance through a successful project management office. Engineering Economics, 24(2), pp.88-98.10.5755/j01.ee.24.2.3087
  4. [4] Relich M., Bzdyra K., 2014. Estimating new product success with the use of intelligent systems. Foundations of Management, 6(2), pp.7-20.10.1515/fman-2015-0007
  5. [5] Trott P., 2005. Innovation Management and New Product Development. Essex: Prentice Hall.
  6. [6] Relich M., Bzdyra K., 2015. Knowledge discovery in enterprise databases for forecasting new product success. Intelligent Data Engineering and Automated Learning (ed. K. Jackowski et al.). Lecture Notes in Computer Science, Vol. 9375, Springer, pp.121-129.
  7. [7] Dieter G.E., 2000. Engineering Design: A Material and Processing Approach. Boston: McGraw-Hill.
  8. [8] Nepal B., Monplaisir L., Singh N., 2005. Integrated fuzzy logic-based model for product modularization during concept development phase. International Journal of Production Economics, Vol. 96, pp.157-174.10.1016/j.ijpe.2004.03.010
  9. [9] Ulrich K.T., Eppinger S.D., 2011. Product Design and Development. Boston: McGraw-Hill.
  10. [10] Relich M., 2015. Identifying relationships between eco-innovation and product success. Technology Management for Sustainable Production and Logistics (ed. P. Golinska, A. Kawa). Berlin Heidelberg: Springer, pp.173-192.10.1007/978-3-642-33935-6_9
  11. [11] Anderson D.M., 2001. Design for Manufacturability: Optimizing Cost, Quality and Time-to-Market. Cambria: CIM Press.
  12. [12] Sharma A., 2005. Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, Vol. 37, pp.1425-1434.10.1016/j.cad.2005.02.012
  13. [13] Danesi F., Gardan N., Gardan Y. Reimeringer M., 2008. P4LM: A methodology for product lifecycle management. Computers in Industry, Vol. 59, pp.304-317.10.1016/j.compind.2007.06.013
  14. [14] Alemanni M., Destefanis F., Vezzetti E., 2011. Model-based definition design in the product lifecycle management scenario. International Journal of Advanced Manufacturing Technology, Vol. 52, pp.1-14.10.1007/s00170-010-2699-y
  15. [15] Gola A., Relich M., Kłosowski G., Świć A., 2015. Mathematical models for manufacturing systems capacity planning and expansion – an overview. Applied Mechanics and Materials, Vol. 791, pp.125-131.10.4028/www.scientific.net/AMM.791.125
  16. [16] Ernst H., 2002. Success factors of new product development: a review of the empirical literature. International Journal of Management Reviews, Vol. 4, pp.1-40.10.1111/1468-2370.00075
  17. [17] Kormancova G., 2012. Project success and failure. Theory of Management 6: The Selected Problems for the Development Support of Management Knowledge Base, Zilina, pp.117-119.
  18. [18] Bhuiyan N., 2011. A framework for successful new product development. Journal of Industrial Engineering and Management, Vol. 4, pp.746-770.10.3926/jiem.334
  19. [19] McCarthy I.P., Tsinopoulos C., Allen P., Rose-Anderssen C., 2006. New product development as a complex adaptive system of decisions. Journal of Product Innovation Management, Vol. 23, pp.437-456.10.1111/j.1540-5885.2006.00215.x
  20. [20] Kahraman C., Buyukozkan G., Ates N.Y., 2007. A two phase multi-attribute decision-making approach for new product introduction. Information Sciences, Vol. 177, pp.1567-1582.10.1016/j.ins.2006.09.008
  21. [21] Sun H., Wing W., 2005. Critical success factors for new product development in the Hong Kong toy industry. Technovation, Vol. 25, pp.293-303.10.1016/S0166-4972(03)00097-X
  22. [22] Relich M., 2016. A knowledge-based system for new product portfolio selection. New Frontiers in Information and Production Systems Modelling and Analysis (ed. P. Rozewski et al.). Intelligent Systems Reference Library, Vol. 98, Springer, pp.169-187.10.1007/978-3-319-23338-3_8
  23. [23] Cooper R., Slagmulder R., 1999. Develop profitable new products with target costing. Sloan Management Review, Vol. 40, pp.23-33.
  24. [24] Ben-Arieh D., Qian L., 2003. Activity-based cost management for design and development stage. International Journal of Production Economics, Vol. 83, pp.169-183.10.1016/S0925-5273(02)00323-7
  25. [25] Niazi A., Dai J., Balabani S., Seneviratne L., 2005. Product cost estimation: technique classification and methodology review. Journal of Manufacturing Science and Engineering, Vol. 128, pp.563-575.10.1115/1.2137750
  26. [26] Weustink I.F., ten Brinke E., Streppel A.H., Kals H.J., 2000. A generic framework for cost estimation and cost control in product design. Journal of Materials Processing Technology, Vol. 103, pp.141-148.10.1016/S0924-0136(00)00405-2
  27. [27] Foussier P., 2006. From Product Description to Cost: A Practical Approach. London: Springer.
  28. [28] Mislick G., Nussbaum D., 2015. Cost Estimation: Methods and Tools. New Jersay: Wiley & Sons.10.1002/9781118802342
  29. [29] Kusiak A., 2000. Computational Intelligence in Design and Manufacturing. New York: John Wiley & Sons.
  30. [30] Medsker L., 1995. Hybrid Intelligent Systems. New York: Springer Science.10.1007/978-1-4615-2353-6
  31. [31] Cavalieri S., Maccarrone P., Pinto R., 2004. Parametric vs. neural network models for the estimation of production costs: a case study in the automotive industry. International Journal of Production Economics, Vol. 91, pp.165-177.10.1016/j.ijpe.2003.08.005
  32. [32] Relich M., 2010. Assessment of task duration in investment projects. Management, 14(2), pp.136-147.
  33. [33] Lolas S., Olatunbosun O., 2008. Prediction of vehicle reliability performance using artificial neural networks. Expert Systems with Applications, Vol. 34, pp.2360-2369.10.1016/j.eswa.2007.03.014
  34. [34] Seo K., Park J., Jang D., Wallace D., 2002. Approximate estimation of the product life cycle cost using artificial neural networks in conceptual design. International Journal of Advanced Manufacturing Technology, Vol. 19, pp.461-471.10.1007/s001700200049
  35. [35] Aydin R., Kwong C., Ji P., Law H., 2014. Market demand estimation for new product development by using fuzzy modelling and discrete choice analysis. Neurocomputing, Vol. 142, 2014, pp.136-146.10.1016/j.neucom.2014.01.051
  36. [36] Yadav O., Singh N., Chinnam R., Goel P., 2003. A fuzzy logic based approach to reliability improvement estimation during product development. Reliability Engineering & System Safety, Vol. 80, pp.63-74.10.1016/S0951-8320(02)00268-5
  37. [37] Carrera D., Mayorga R., 2008. Supply chain management: a modular fuzzy inference system approach in supplier selection for new product development. Journal of Intelligent Manufacturing, Vol. 19, pp.1-12.10.1007/s10845-007-0041-9
  38. [38] Doskocil R., 2016. An evaluation of total project risk based on fuzzy logic. Business: Theory and Practice, 17(1), pp.23-31.10.3846/btp.2016.534
  39. [39] Doskocil R., 2015. Fuzzy logic: an instrument for the evaluation of project status. Revista de Metodos Cuantitativos para la Economia y la Empresa, Vol. 19, pp.5-23.
  40. [40] Relich M., 2013. Fuzzy project scheduling using constraint programming. Applied Computer Science, 9(1), pp.3-16.
  41. [41] Chang D., Chen C., Lee K., 2014. A crowd-sourcing development approach based on a neuro-fuzzy network for creating innovative product concepts. Neurocomputing, Vol. 142, pp.60-72.10.1016/j.neucom.2014.03.044
  42. [42] Kwong C., Wong T., Chan K., 2009. A methodology of generating customer satisfaction models for new product development using a neuro-fuzzy approach. Expert Systems with Applications, Vol. 36, pp.11262-11270.10.1016/j.eswa.2009.02.094
  43. [43] Relich M., 2015. A computational intelligence approach to predicting new product success. Proceedings of the 11th International Conference on Strategic Management and its Support by Information Systems, Uherske Hradiste, pp.142-150.
  44. [44] Rossi F., van Beek P., Walsh T., 2006. Handbook of Constraint Programming. Elsevier.
  45. [45] Bocewicz G., Nielsen I., Banaszak Z., 2014. Iterative multimodal processes scheduling. Annual Reviews in Control, 38(1), pp.113-132.10.1016/j.arcontrol.2014.03.011
  46. [46] Relich M., Swic A., Gola A., 2015. A knowledge-based approach to product concept screening. Distributed Computing & Artificial Intelligence (ed. S. Omatu et al.). Advances in Intelligent Systems and Computing, Vol. 373, Springer, pp.341-348.10.1007/978-3-319-19638-1_39
  47. [47] Relich M., Banaszak Z., 2011. Reference model of project prototyping problem. Foundations of Management, 3(1), pp.33-46.10.2478/v10238-012-0034-7
  48. [48] Han J., Kamber M., 2006. Data Mining. Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers.
  49. [49] Cios K.J., Pedrycz W., Swiniarski R.W., Kurgan L.A., 2007. Data Mining: A Knowledge Discovery Approach. New York: Springer.
  50. [50] Relich M., Pawlewski P., 2015. A multi-agent system for selecting portfolio of new product development project. PAAMS 2015 Workshops (ed. J. Bajo et al.). Communications in Computer and Information Science, Vol. 524, Springer, pp.102-114.10.1007/978-3-319-19033-4_9
  51. [51] Fayyad U., Piatetsky-Shapiro G., Smith P., 1996. From data mining to knowledge discovery in databases. American Association for Artificial Intelligence, Fall, pp.37-54.10.1007/3-540-61286-6_131
  52. [52] Relich M., 2013. Project parameter estimation on the basis of an ERP database. Foundations of Management, 5(2), pp.49-58.10.2478/fman-2014-0012
  53. [53] Van Roy P., Haridi S., 2004. Concepts, Techniques and Models of Computer Programming. Massachusetts Institute of Technology.
  54. [54] Baptiste P., Le Pape C., Nuijten W., 2001. Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems. Norwell, Massachusetts: Kluwer Academic Publishers.10.1007/978-1-4615-1479-4
  55. [55] Relich M., 2011. CP-based decision support for scheduling. Applied Computer Science, 7(1), pp.7-17.
  56. [56] Banaszak Z., Zaremba M., Muszyński W., 2009. Constraint programming for project-driven manufacturing. International Journal of Production Economics, Vol. 120, pp. 463-475.10.1016/j.ijpe.2008.12.016
  57. [57] Relich M., 2014. A constraint programming approach for scheduling in a multi-project environment. International Journal of Advanced Computer Science and Information Technology, 3(2), pp.156-171.
DOI: https://doi.org/10.1515/fman-2016-0002 | Journal eISSN: 2300-5661 | Journal ISSN: 2080-7279
Language: English
Page range: 21 - 34
Published on: Mar 26, 2016
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 Marcin Relich, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.