Have a personal or library account? Click to login

The Effects of Bankruptcy on the Predictability of Price Formation Processes on Warsaw’s Stock Market

Open Access
|Feb 2017

References

  1. Capasso, V., Bakstein, D. (2012). An Introduction to Continuous-Time Stochastic Processes. Boston: Birkhäuser Boston.10.1007/978-0-8176-8346-7
  2. Cover, T., Thomas, J. (1991). Elements of Information Theory. New York: John Wiley & Sons.10.1002/0471200611
  3. Fiedor, P. (2014a). Frequency Effects on Predictability of Stock Returns. In Proceedings of the IEEE Computati onal Intelligence for Financial Engineering & Economics (pp. 247-254). London: IEEE.10.1109/CIFEr.2014.6924080
  4. Fiedor, P. (2014b). Maximum Entropy Producti on Principle for Stock Returns. arxiv, 1408.3728.10.1109/SSCI.2015.106
  5. Fiedor, P. (2014c). Sector Strength and Efficiency on Developed and Emerging Financial Markets. Physica A, 413, 180-188.10.1016/j.physa.2014.06.066
  6. Fiedor, P., Hołda, A. (2014). Wpływ ogłoszenia upadłości na złożoność strukturalną zmian cen na GPW. Manuscript in review.
  7. Garland, J., James, R., Bradley E. (2014). Model-free Quantification of Time-series Predictability. arxiv, 1404.6823.10.1103/PhysRevE.90.052910
  8. Gao, Y., Kontoyiannis, I., Bienenstock, E. (2006). From the Entropy to the Statistical Structure of Spike Trains. In IEEE International Symposium on Information Theory (pp. 645-649).10.1109/ISIT.2006.261864
  9. Kontoyiannis, I. (1998). Asymptotically Optimal Lossy Lempel-Ziv Coding. In IEEE International Symposium on Information Theory. Cambridge: MIT (p. 273).
  10. Mantegna, R.N., Stanley, H.E. (2000). Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge: Cambridge University Press.
  11. Martyushev, L., Seleznev, V. (2006). Maximum Entropy Production Principle in Physics, Chemistry and Biology. Physical Reports, 426, 1-45.10.1016/j.physrep.2005.12.001
  12. Rosser, B. (2008). Econophysics and Economic Complexity. Advances in Complex Systems, 11(5), 745-760.10.1142/S0219525908001957
  13. Shannon, C.E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423, 623-656.10.1002/j.1538-7305.1948.tb00917.x
  14. Sinai, Y. (1959). On the Notion of Entropy of a Dynamical System. Doklady of Russian Academy of Sciences, 124, 768-771.
  15. Song, C., Qu, Z., Blumm, N., Barabási, A.-L. (2010). Limits of Predictability in Human Mobility. Science, 327(5968), 1018-1021.
  16. Willems, F., Shtarkov, Y., Tjalkens, T. (1995). The Context-Tree Weighting Method: Basic Properties. IEEE Transactions on Information Theory, 41(3), 653-664.10.1109/18.382012
  17. Ziv, J., Lempel, A. (1977). A Universal Algorithm for Sequential Data Compression. IEEE Transactions on Information Theory, 23(3), 337-343.10.1109/TIT.1977.1055714
Language: English
Page range: 32 - 42
Submitted on: Feb 14, 2016
Accepted on: Mar 14, 2016
Published on: Feb 9, 2017
Published by: University of Information Technology and Management in Rzeszow
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Paweł Fiedor, Artur Hołda, published by University of Information Technology and Management in Rzeszow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.