Have a personal or library account? Click to login
Assessment applicability of selected models of multiple discriminant analyses to forecast financial situation of Polish wood sector enterprises Cover

Assessment applicability of selected models of multiple discriminant analyses to forecast financial situation of Polish wood sector enterprises

Open Access
|Apr 2017

References

  1. Abellán J., Mantas C.J. 2014. Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41 (8), 3825-3830. http://doi.org/10.1016/j.eswa.2013.12.003.10.1016/j.eswa.2013.12.003
  2. Adamowicz K., Noga T. 2014. Multivariate analysis of bankruptcy in companies in the wood sector. Sylwan, 156 (9), 643-650.
  3. Adamowicz K., Szramka H., Starosta-Grala M., Szczypa P. 2016. Export and import of timber in selected member states of the European Union. Sylwan, 160 (3), 179-186.
  4. Afik Z., Arad O., Galil K. 2016. Using Merton model for default prediction: An empirical assessment of selected alternatives. Journal of Empirical Finance, 35, 43-67. http://doi.org/10.1016/j.jempfin.2015.09.004.10.1016/j.jempfin.2015.09.004
  5. Agarwal V., Taffler R.J. 2007. Twenty-five years of the Taffler z-score model: Does it really have predictive ability? Accounting and Business Research, 37 (4), 285-300.
  6. Altman E.I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23 (4), 589-609. http://doi.org/10.1111/j.1540-6261.1968.tb00843.x.10.1111/j.1540-6261.1968.tb00843.x
  7. Altman E.I., Narayanan P. 1997. An international survey of business failure classification models. Financial Markets, Institutions and Instruments, 6 (2), 1-57.
  8. Balcaen S., Ooghe H. 2006. 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38 (1), 63-93. http://doi.org/10.1016/j.bar.2005.09.001.10.1016/j.bar.2005.09.001
  9. Brezigar-Masten A., Masten I. 2012. CART-based selection of bankruptcy predictors for the logit model. Expert Systems with Applications, 39 (11), 10153-10159. http://doi.org/10.1016/j.eswa.2012.02.125.10.1016/j.eswa.2012.02.125
  10. Card D.H. 1982. Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48, 431-439.
  11. Chen N., Ribeiro B., Vieira A., Chen A. 2013. Clustering and visualization of bankruptcy trajectory using self-organizing map. Expert Systems with Applications, 40 (1), 385-393. http://doi.org/10.1016/j.eswa.2012.07.047.10.1016/j.eswa.2012.07.047
  12. Delen D., Kuzey C., Uyar A. 2013. Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40 (10), 3970-3983. http://doi.org/10.1016/j.eswa.2013.01.012.10.1016/j.eswa.2013.01.012
  13. Dimitras A.I., Zanakis S.H., Zopounidis C. 1996. A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90 (3), 487-513.
  14. du Jardin P. 2016. A two-stage classification technique for bankruptcy prediction. European Journal of Operational Research, 254 (1), 236-252. http://doi.org/10.1016/j.ejor.2016.03.008.10.1016/j.ejor.2016.03.008
  15. Grice J.S., Dugan M.T. 2001. The limitations of bankruptcy prediction models: Some cautions for the researcher. Review of Quantitative Finance and Accounting, 17 (2), 151-166.
  16. Gruszczynski M. 2005. Strengths and Weaknesses of Bankruptcy Models. Materialy i Prace Instytutu Funkcjonowania Gospodarki Narodowej, 93, 185-187.
  17. Hołda A. 2001. Prognozowanie bankructwa jednostki w warunkach gospodarki polskiej z wykorzystaniem funkcji dyskryminacyjnej ZH. Rachunkowość, 5, 306-310.
  18. Juszczyk S., Balina R. 2014. Prognozowanie zagrożenia bankructwem przedsiębiorstw w wybranych branżach. Ekonomista, 1, 67-95.
  19. Kocel J. 2010. Methodological foundations of financial and economic forecast for the State Forests National Forest Holding. Sylwan, 154 (1), 41-51.
  20. Matuszyk A. 2003. Modele scoringowe-pojęcie, etapy budowy, rodzaje. Studia i Prace Kolegium Zarządzania i Finansów Szkoła Główna Handlowa, 40, 9-21.
  21. Obermann L., Waack S. 2015. Demonstrating noninferiority of easy interpretable methods for insolvency prediction. Expert Systems with Applications, 42 (23), 9117-9128. http://doi.org/10.1016/j.eswa.2015.08.009.10.1016/j.eswa.2015.08.009
  22. Ozgulbas N., Koyuncugil A.S. 2010. Financial early warning system for risk detection and prevention from financial crisis. Surveillance Technologies and Early Warning Systems: Data Mining Applications for Risk Detection. Idea Group Inc, New York, 76-108.
  23. Prusak B. 2004. Metody wykorzystywane w analizie porownawczej modeli oceny zagrożonych przedsiębiorstw upadłoscia. Retrieved September 15, 2016, from http://www1.zie.pg.gda.pl/~pb/ap.pdf.
  24. Ribeiro B., Silva C., Chen N., Vieira A., Carvalho das Neves J. 2012. Enhanced default risk models with SVM+. Expert Systems with Applications, 39 (11), 10140-10152. http://doi.org/10.1016/j.eswa.2012.02.142.10.1016/j.eswa.2012.02.142
  25. Stawicki J., Sojak S. 2001. Wykorzystanie metod taksonomicznych do oceny kondycji ekonomicznej przedsiębiorstw. Zeszyty Teoretyczne Rachunkowości, 3 , 55-66.
DOI: https://doi.org/10.1515/ffp-2017-0006 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 59 - 67
Submitted on: Nov 7, 2016
Accepted on: Feb 15, 2017
Published on: Apr 1, 2017
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Krzysztof Adamowicz, Tomasz Noga, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.