Have a personal or library account? Click to login
Modelling forest loss and other land use change dynamics in Ashanti Region of Ghana Cover

Modelling forest loss and other land use change dynamics in Ashanti Region of Ghana

Open Access
|Dec 2015

References

  1. Abay T. 2014. Factors Affecting Forest User’s Participation in Participatory Forest Management; Evidence from Alamata Community Forest, Tigray; Ethiopia. Retrieved from http://opendocs.ids.ac.uk/opendocs/handle/123456789/4227.
  2. Agbosu L.K. 1983. The Origins of Forest Law and Policy in Ghana during the Colonial Period. Journal of African Law, 27, 2, 169-187. Retrieved from http://journals.cambridge.org/abstract_S0021855300013218.
  3. Aragão L.E.O.C., Poulter B., Barlow J.B., Anderson L.O., Malhi Y., Saatchi S., Gloor E. 2014. Environmental change and the carbon balance of Amazonian forests. Biological Reviews, 89 (4), 913-931. doi:10.1111/brv.12088.10.1111/brv.1208825324039
  4. Bele M.Y., Sonwa D.J., Tiani A.M. 2015. Adapting the Congo Basin forests management to climate change: Linkages among biodiversity, forest loss, and human well-being. Forest Policy and Economics, 50, 1-10. doi:10.1016/j.forpol.2014.05.010.10.1016/j.forpol.2014.05.010
  5. Benneh G., Agyepong G.T. 1990. Land Degradation in Ghana, London: Commonwealth Secretariat/University of Ghana.
  6. Boafo J. 2013. The Impact of Deforestation on Forest Livelihoods in Ghana, Africa Portal. Retrieved September 12, 2014, from http://www.africaportal.org/articles/2013/01/16/impact-deforestationforest-livelihoods-ghana#chapter%3C?phpprint$chapter;?%3E.
  7. Clarke K.C., Hoppen S., Gaydos L. 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24, 247-261.
  8. Dei G.J.S. 1992. A forest beyond the trees: Tree cutting in rural Ghana. Human Ecology, 20 (1), 57-88. doi:10.1007/BF00889696.10.1007/BF00889696
  9. EPA-Environmental Protection Agency. 2004. Ghana State of the Environment Report, EPA Ghana, Accra, 11-51.
  10. GSS. 2013. 2010 Population and Housing census National analytical report. Accra, Ghana, 1-430.
  11. Hansen M.C., Potapov P.V., Moore R. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342, 850-853.
  12. Huang J., Wu Y., Gao T., Zhan Y., Cui W. 2015. An integrated approach based on Markov Chain and cellular automata to simulation of urban land use changes. Applied Mathematics and Information Sciences, 9 (2), 769-775.
  13. IIED - International Institute for Environment and Development. 1987. Our common Future: A readers Guide, London: Earthscan.
  14. Jabbour J., Hunsberger C. 2014. Visualizing relationships between drivers of nvironmental echange and pressures on land-based ecosystems. Natural Resources, 5 (04), 146-160. doi:10.4236/nr.2014.5401510.4236/nr.2014.54015
  15. Jones W.B., Bacon M., Hastings D.A. 1981. The Lake Bosumtwi impact crater, Ghana. Geological Society of America Bulletin, 92 (6), 342-349. doi:10.1130/0016-7606(1981)92.
  16. Kalema V.N., Witkowski E.T.F., Erasmus B.F.N., Mwavu E.N. 2014. The impacts of changes in land use on woodlands in an equatorial African savanna. Land Degradation and Development. doi:10.1002/ ldr.2279.
  17. Kim D.H., Sexton J.O., Noojipady P., Huang C., Anand A., Channan S., Townshend J.R. 2014. Global, Landsat-based forest-cover change from 1990 to 2000. Remote Sensing of Environment, 155, 178-193. doi:10.1016/j.rse.2014.08.017.10.1016/j.rse.2014.08.017
  18. Kissinger G., Herold M. 2014. Drivers of deforestation and forest degradation: a synthesis report for REDD+ policymakers. Retrieved from http://www.fao.org/nr/lada/index.php?option=com_content&view=article&id=186:deforestation&catid=1&Itemid=171&lang=en.
  19. Lillesand T. Kiefer R.W. 2008. Remote sensing and image interpretation (6th Edition). JohnWiley and Sons Inc., New York.
  20. Lu D., Mausel P., Brondizio E., Moran E. 2004. Change detection techniques. International Journal of Remote Sensing, 25 (12), 2365-2407.
  21. Mas J.F. 1999. Monitoring land-cover changes: A comparison of change detection techniques. International Journal of Remote Sensing, 20 (1), 139-152. doi:10.1080/014311699213659.10.1080/014311699213659
  22. Medrilzam M., Dargusch P., Herbohn J., Smith C. 2013. The socio-ecological drivers of forest degradation in part of the tropical peatlands of Central Kalimantan, Indonesia. Forestry, 87 (2), 335-345. doi:10.1093/forestry/cpt033.10.1093/forestry/cpt033
  23. Michetti M., Zampieri M. 2014. Climate-human-land interactions: A review of major modelling approaches. Land, 3 (3), 793-833. doi:10.3390/land3030793.10.3390/land3030793
  24. Miller J.H. 1998. Active nonlinear tests (ANTs) of complex simulation models. Management Science, 44 (6), 820-830.
  25. Mishra V.N., Rai P.K., Mohan K. 2014. Prediction of land use changes based on land change modeler (LCM) using remote sensing: A case study of Muzaffarpur (Bihar), India. Journal of the Geographical Institute Jovan Cvijic, SASA, 64 (1), 111-127. Retrieved from http://www.doiserbia.nb.rs/Article.aspx?id=0350-75991401111M&AspxAutoDetectCookieSupport=1#.VMjUjmKsVjo.10.2298/IJGI1401111M
  26. Monserud R.A., Leamans R. 1992. Comparing global vegetation maps with the kappa statistic. Ecological Modelling, 62, 275-293.
  27. Monson R.K. 2013. Ecology and the Environment. Springer, New York. doi:10.1007/978-1-4614-7612-210.1007/978-1-4614-7612-2
  28. Petit C., Scudder T., Lambin E. 2001. Quantifying processes of land cover by remote sensing: resettlement and rapid land cover changes in south-eastern Zambia. International Journal of Remote Sensing, 22 (17), 3435-3456.
  29. Pontius G.R. 2000. Quantification error versus location error in comparison of categorical maps. Photogrammetry Engineering of Remote Sensing, 66, 1011-1016.
  30. Razavi B.S. 2014. Predicting the trend of land use changes using artificial neural network and Markov Chain Model ( Case Study: Kermanshah City). Research Journal of Environmental and Earth Sciences, 6 (4), 215-226.
  31. Robinove C.J. 1986. Principles of logic and the use of digital Geographic Information Systems. U.S. Geological Survey Professional Paper No. 977. U.S. Gov. Printing Office, Washington, D.C.10.3133/cir977
  32. Ronneberg K., Tol R.S.J., Schneider U.A. 2005. KLUM: A simple model of global agricultural land se as a ucoupling tool of economy and vegetation; FNU Working Paper No. 65; Hamburg University and Centre for Marine and Atmospheric Science: Hamburg, Germany.
  33. Rounsevell M.D.A., Annetts J.E., Audsley E., Mayr T., Reginster I. 2003. Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture, Ecosystems and Environment, 95, 465-479.
  34. Schelhaas M.J., Eggers J., Lindner M., Nabuurs G.J., Pussinen A., Päivinen R., Schuck A., Verkerk P.J., van der Werf D.C., Zudin S. 2007. Model documentation for the European Forest Information Scenario Model (EFISCEN 3.1.3); EFI Technical Report 26; Alterra: Wageningen, The Netherlands.
  35. Sexton J., Huang C., Channan S., Feng M., Song X., Kim D., Townshend J.R. 2013. Global, long-term Earth Science Data Records of forest cover, change, and fragmentation from Landsat: the Global Forest Cover Change Project. AGU Fall Meeting Abstracts, -1, 0432. Retrieved from http://adsabs.harvard.edu/abs/2013AGUFM.B41D0432S.
  36. Singh A. 1989. Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10 (6), 989-1003.
  37. Snedecor G.W., Cochran W.G. 1989. Statistical methods, eighth edition. Iowa State University Press.
  38. Stephenne N. Lambin E.F. 2004. Scenarios of land-use change in Sudano-Sahelian countries of Africa to better understand driving forces. GeoJournal, 61, 365-379.
  39. Stéphenne N., Lambin E.F. 2001. A dynamic simulation model of land-use changes in Sudano-Sahelian countries of Africa (SALU). Agriculture, Ecosystems and Environment, 85, 145-161.
  40. Townshend J.R., Masek J.G., Huang C., Vermote E.F., Gao F., Channan S., Wolfe R.E. 2012. Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges. International Journal of Digital Earth, 5 (5), 373-397. doi:10.1080/17538947.2012.713190.10.1080/17538947.2012.713190
  41. Van Delden H., Luja P., Engelen G. 2007. Integration of multi-scale dynamic spatial models of socio-economic and physical processes for river basin management. Environmental Modelling and Software, 22, 223-238.
  42. Veldkamp A., Fresco L.O. 1996. CLUE-CR: An integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecological Modelling, 91, 231-248.
  43. Verburg P. Overmars K. 2009. Combining top-down and bottom-up dynamics in land use modelling: Exploring the future of abandoned farmlands in Europe with Dyna-CLUE model. Landscape Ecology, 24, 1167-1181.
  44. Wright I.A., Smeets P.J.A.M., Elbersen B.S., Roos Klein-Lankhorst, J., Pflimlin A., Louloudis L., Vlahos G., Crabtree J.R., Williams S.M., Hinrichs P., et al. 1999. The ELPEN project. In A Protocol for Building the ELPEN Livestock Policy Decision Support System; Macaulay Land Use Research Institute (MLURI). Aberdeen, UK.
  45. Zamyatin A., Markov N. 2005. Approach to land cover change modelling using the cellular automata // Proceedings of 8 Conference on Geographic Information Science, Estoril, Portugal, AGILE, 587-592.
DOI: https://doi.org/10.1515/ffp-2015-0010 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 96 - 111
Submitted on: Feb 24, 2015
Accepted on: Jun 30, 2015
Published on: Dec 12, 2015
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Addo Koranteng, Tomasz Zawila-Niedzwiecki, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.