Have a personal or library account? Click to login
Predicting Aggregated User Satisfaction in Software Projects Cover

Predicting Aggregated User Satisfaction in Software Projects

Open Access
|Dec 2018

References

  1. [1] Atkeson C.G., Moore A.W., Schaal S., Locally Weighted Learning, Artificial Intelligence Review, 11, 1-5, 1997, 11-73.10.1023/A:1006559212014
  2. [2] Cerpa, N., Bardeen, M., Astudillo, C. A., Verner, J., Evaluating different families of prediction methods for estimating software project outcomes, Journal of Systems and Software, 112, 2016, 48–64.10.1016/j.jss.2015.10.011
  3. [3] Cleary J.G., Trigg L.E., K*: an instance-based learner using and entropic distance measure, in: Proceedings of the Twelfth International Conference on International Conference on Machine Learning (ICML’95), Armand Prieditis and Stuart J. Russell (Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995, 108-114.10.1016/B978-1-55860-377-6.50022-0
  4. [4] Ding, C.H.Q., Peng, H., Minimum redundancy feature selection from microarray gene expression data, in: Proc. the 2nd IEEE Comp. Society Bioinformatics Conf., Stanford, CA, IEEE Comp. Society, Los Alamitos, 2003, 523–529.
  5. [5] Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., Tailor, M., Making Resource Decisions for Software Projects, in: Proceedings of the 26th International Conference on Software Engineering, IEEE Computer Society, Washington, DC, 2004, 397–406.
  6. [6] Frank E., Hall M.A., Witten I.H., The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, Morgan Kaufmann, Fourth Edition, 2016, http://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf, last accessed 2018/05/22.
  7. [7] Frank E., Witten I.H., Generating Accurate Rule Sets Without Global Optimization. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML ‘98), Jude W. Shavlik (Ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998, 144-151.
  8. [8] Friedman J., Hastie T., Tibshirani R., Special Invited Paper. Additive Logistic Regression: A Statistical View of Boosting, The Annals of Statistics, 28, 2, 2000, 337-374.10.1214/aos/1016218223
  9. [9] Garcés, L., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y., Quality attributes and quality models for ambient assisted living software systems: A systematic mapping, Information and Software Technology, 82, 2017, 121-138.10.1016/j.infsof.2016.10.005
  10. [10] Hall M., Frank E., Combining Naive Bayes and Decision Tables, in: D.L. Wilson & H. Chad (Eds), Proceedings of Twenty-First International Florida Artificial Intelligence Research Society Conference, AAAI Press, Coconut Grove, Florida, USA, 2008, 318-319.
  11. [11] Holmes G., Pfahringer B., Kirkby R., Frank E., Hall M., Multiclass Alternating Decision Trees, in: Proceedings of the 13th European Conference on Machine Learning (ECML ‘02), Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (Eds.). Springer-Verlag, London, UK, 2002, 161-172.10.1007/3-540-36755-1_14
  12. [12] Holte R.C., Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11, 1993, 63-91.10.1023/A:1022631118932
  13. [13] ISBSG Repository Data Release 11. International Software Benchmarking Standards Group, 2009.
  14. [14] Idri, A., Bachiri, M., Fernández-Alemán, J.L., A Framework for Evaluating the Software Product Quality of Pregnancy Monitoring Mobile Personal Health Records, Journal of Medical Systems, 40, 3, 2016, art. no. 50, 1-17.10.1007/s10916-015-0415-z26643080
  15. [15] ISO/IEC: Software engineering Software product Quality Requirements and Evaluation (SQuaRE) System and software quality models, volume ISO/IEC 25010:2011(E), 2011.
  16. [16] Jin W., Tung A.K.H., Han J., Wang W., Ranking Outliers Using Symmetric Neighborhood Relationship, in: Ng WK., Kitsuregawa M., Li J., Chang K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science, vol 3918. Springer, Berlin, Heidelberg, 2006.10.1007/11731139_68
  17. [17] Jones C., Applied Software Measurement: Global Analysis of Productivity and Quality, McGraw-Hill Education, 3rd edition, 2008.
  18. [18] Kitchenham B.A., Madeyski L., Budgen D., Keung J., Brereton P., Charters S., Gibbs S., Pohthong A., Robust Statistical Methods for Empirical Software Engineering, Empirical Software Engineering, 22, 2, 2017, 579-630.10.1007/s10664-016-9437-5
  19. [19] Kocaguneli E., Menzies T., Bener A., Keung J. W., Exploiting the Essential Assumptions of Analogy-Based Effort Estimation, IEEE Transactions on Software Engineering, 38, 2, 2012, 425–438.10.1109/TSE.2011.27
  20. [20] Kohavi R., The power of decision tables, in: Proceedings of the 8th European Conference on Machine Learning (ECML’95), Nada Lavrač and Stefan Wrobel (Eds.). Springer-Verlag, Berlin, Heidelberg, 1995, 174-189.10.1007/3-540-59286-5_57
  21. [21] Kohavi R., Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), Evangelos Simoudis, Jiawei Han, and Usama Fayyad (Eds.). AAAI Press, 1996, 202-207.
  22. [22] Landwehr N., Hall M., Frank E., Logistic Model Trees. Machine Learning, 59, 1-2, 2005, 161-205.10.1007/s10994-005-0466-3
  23. [23] Le Cessie S., Van Houwelingen J., Ridge Estimators in Logistic Regression, Journal of the Royal Statistical Society. Series C (Applied Statistics), 41, 1, 1992, 191-201.10.2307/2347628
  24. [24] Menzies T., Jalali O., Hihn J., Baker D., Lum K., Stable rankings for different effort models, Automated Software Engineering, 17, 4, 2010, 409–437.10.1007/s10515-010-0070-z
  25. [25] Olsina, L., Lew, P., Dieser, A., Rivera, B., Updating quality models for evaluating new generation web applications, Journal of Web Engineering, 11, 3, 2012, 209-246.
  26. [26] Pearl J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Representation and Reasoning Series (2nd printing ed.). San Francisco, California: Morgan Kaufmann, 1988.
  27. [27] Quinlan R., C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA, 1993.
  28. [28] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2017.
  29. [29] Radlinski L., How software development factors influence user satisfaction in meeting business objectives and requirements?, in: Madeyski, L., Ochodek, M. (eds.), Software Engineering from Research and Practice Perspectives, chapter 6, Nakom, Poznan-Warszawa, 2014, 101–119.
  30. [30] Radliński Ł., Preliminary evaluation of schemes for predicting user satisfaction with the ability of system to meet stated objectives, Journal of Theoretical and Applied Computer Science, 9, 2, 2015, 32–50.
  31. [31] Radlinski L., Towards expert-based modeling of integrated software quality, Journal of Theoretical and Applied Computer Science, 6, 2, 2012, 13–26.
  32. [32] RapidMiner Studio, https://rapidminer.com/products/studio/, last accessed 2018/05/22.
  33. [33] Schowe B., Morik K., Fast-Ensembles of Minimum Redundancy Feature Selection, in: Okun O., Valentini G., Re M. (eds) Ensembles in Machine Learning Applications. Studies in Computational Intelligence, vol 373. Springer, Berlin, Heidelberg, 2011.10.1007/978-3-642-22910-7_5
  34. [34] Shepperd M., Bowes D., Hall T., Researcher Bias: The Use of Machine Learning in Software Defect Prediction. IEEE Transactions on Software Engineering, 40, 2014, 603–616.10.1109/TSE.2014.2322358
  35. [35] Shi H., Best-first Decision Tree Learning, Thesis, Master of Science. The University of Waikato, Hamilton, New Zealand, 2007.
  36. [36] Song Q., Jia Z., Shepperd M., Ying S., Liu J., A General Software Defect-Proneness Prediction Framework, IEEE Transactions on Software Engineering, 37, 3, 2011, 356-370.10.1109/TSE.2010.90
  37. [37] Sumner M., Frank E., Hall M., Speeding up logistic model tree induction, in: Proceedings of the 9th European conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’05), Alípio Mário Jorge, Luís Torgo, Pavel Brazdil, Rui Camacho, and João Gama (Eds.). Springer-Verlag, Berlin, Heidelberg, 2005, 675-683.10.1007/11564126_72
  38. [38] Tang J., Chen Z., Fu A. W. C., Cheung, D. W., Enhancing Effectiveness of Outlier Detections for Low Density Patterns, in: Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD). Taipei, 2002, 535-548.10.1007/3-540-47887-6_53
  39. [39] Vargas J.A., García-Mundo L., Genero M., Piattini M., A systematic mapping study on serious game quality, in: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering (EASE ‘14), ACM, New York, 2014, Article no. 15.10.1145/2601248.2601261
DOI: https://doi.org/10.1515/fcds-2018-0017 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 335 - 357
Submitted on: Aug 7, 2018
Accepted on: Oct 19, 2018
Published on: Dec 31, 2018
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Łukasz Radliński, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.