Have a personal or library account? Click to login
Supervised Machine Learning with Control Variates for American Option Pricing Cover

Supervised Machine Learning with Control Variates for American Option Pricing

Open Access
|Oct 2018

References

  1. [1] Ackerer D. and Filipovic D. (2017), 'Option Pricing with Orthogonal Polynomial Expansions', Swiss Finance Institute Research Paper No. 17-41.
  2. [2] Carr P. and Madan D. (1999), 'Option valuation using the fast Fourier transform', New York, NY: John Wiley & Sons.10.21314/JCF.1999.043
  3. [3] Glasserman P. (2003), 'Monte Carlo Methods in Financial Engineering', Springer Science and Business Media New York.10.1007/978-0-387-21617-1
  4. [4] Glasserman P. and Yu B. (2004). 'Number of paths versus basis functions in American option pricing.' The Annals of Applied Probability, 14(4):2090-2119.10.1214/1050516040000008461
  5. [5] Gramacy R. and Ludkovski M. (2015), 'Sequential design for optimal stopping problems', SIAM Journal on Financial Mathematics, p. 748-775.
  6. [6] Heston S., (1993), 'A closed-form solution for options with stochastic volatility with applications to bond and currency options', Review of Financial Studies.10.1093/rfs/6.2.327
  7. [7] Li Y., Szepesvari C. and Schuurmans D. (2008), Learning an Exercise Policy for American Options', Proceedings of the 12th AISTATS.10.1007/978-3-540-89722-4_13
  8. [8] Longstaff F. and Schwartz E. (2001), 'Valuing American options by simulations: a simple least squares approach', The Review of Financial Studies, 14 , pp. 113-148.10.1093/rfs/14.1.113
  9. [9] Kloeden P. and Platen E. (1992), 'Numerical Solution of Stochastic Differential Equations'. Berlin: Springer-Verlag.10.1007/978-3-662-12616-5
  10. [10] Ludkovski M. (2016), 'Kriging Metamodels and Experimental Design for Bermu- dan Option Pricing', arXiv preprint arXiv:1509.02179, pp. 748-775.
  11. [11] Pizzi C. and Pellizzari P. (2002) 'Monte Carlo Pricing of American Options Using Nonparametric Regression', Rendiconti per gli Studi Economici Quantitativi, 75-91.
  12. [12] O'Sullivan C. and O'Sullivan S. (2013) 'Pricing European and American Options in the Heston Model with Accelerated Explicit Finite Differencing Methods', International Journal of Theoretical and Applied Finance Vol. 16, No. 310.1142/S0219024913500155
  13. [13] Rasmussen N. S. (2005) 'Control variates for Monte Carlo valuation of American options', Journal of Computational Finance, vol. 9, no. 1, 09.
  14. [14] Rasmussen C. E. and Williams C. K. I. (2006), 'Gaussian Processes for Machine Learning', MIT Press10.7551/mitpress/3206.001.0001
  15. [15] Tsitsiklis J. and Van Roy B. (2001), 'Regression methods for pricing complex American-style options', IEEE Transactions on Neural Networks, 12 , pp. 694-703.10.1109/72.93508318249905
DOI: https://doi.org/10.1515/fcds-2018-0011 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 207 - 217
Submitted on: Feb 2, 2018
Accepted on: Sep 5, 2018
Published on: Oct 27, 2018
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Gang Mu, Teodor Godina, Antonio Maffia, Yong Chao Sun, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.