[1] Arnborg S., Corneil D., and Proskurowski A., Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth., 8, 1987, 277–284.10.1137/0608024
[2] Babel L., Ponomarenko I. N. and Tinhofer G., The Isomorphism Problems for directed Path Graphs and for Rooted Directed Path Graphs, J. Algorithms, 21, 1996, 542–564.10.1006/jagm.1996.0058
[3] Bodlaender H. L., Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, J. Algorithms, 11, 1990, 631–643.10.1016/0196-6774(90)90013-5
[4] Booth K. S. and Colbourn C. J., Problems polynomially equivalent to graph isomorphism, Technical Report CS-77-04, Computer Science Department, University of Waterloo, 1979
[9] Lee J., Han W. S., Kasperovics R., and Lee J. H., An indepth comparison of subgraph isomorphism algorithms in graph databases, Proceedings of the 39th international conference on Very Large Data Bases. VLDB Endowment, 2012, 133–144.10.14778/2535568.2448946
[13] Nagoya T., Algorithms for Graph Isomorphism with Restriction on Chordal Graphs with Bounded Clique Size, IEICE Trans. Inf. & Sys., J95-D(11), 2012, 1889–1896.
[14] Nagoya T. and Toda S., Computational Complexity of Computing a Partial Solution for the Graph Automorphism Problems, Theor. Comput. Sci., 410, 2009, 2064–2071.10.1016/j.tcs.2009.01.001
[15] Saltz M., Jain A., Kothari A., Fard A., Miller J. A., Ramaswamy L., An Algorithm for Subgraph Pattern Matching on Very Large Labeled Graphs, IEEE International Congress on Big Data, 2014.10.1109/BigData.Congress.2014.79
[16] Toda S., Computing Automorphism Groups of Chordal Graphs Whose Simplicial Components Are of Small Size, IEICE Trans. Inf. & Sys., E89-D(8), 2006, 2388–2401.10.1093/ietisy/e89-d.8.2388