Have a personal or library account? Click to login
Heuristic possibilistic clustering for detecting optimal number of elements in fuzzy clusters Cover

Heuristic possibilistic clustering for detecting optimal number of elements in fuzzy clusters

Open Access
|Mar 2016

References

  1. [1] Anderson E., The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 1, 1935, 2-5.
  2. [2] Bezdek J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.10.1007/978-1-4757-0450-1
  3. [3] Chiang J.-H., Yue S., Yin Z.-X., A new fuzzy cover approach to clustering, IEEE Transactions on Fuzzy Systems, 12, 2, 2004, 199-208.10.1109/TFUZZ.2004.825076
  4. [4] Corsini P., Lazzerini B., Marcelloni F., A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm, Soft Computing, 9, 6, 2005, 439-447.10.1007/s00500-004-0359-6
  5. [5] De Cáceres M., Oliva F., Font X., On relational possibilistic clustering, Pattern Recognition, 39, 11, 2006, 2010-2024.10.1016/j.patcog.2006.04.008
  6. [6] Everitt B.S., Landau S., Leese M., Stahl D., Cluster Analysis, 5th Edition, Wiley, Chichester, 2011.10.1002/9780470977811
  7. [7] Hamasuna Y., Endo Y., Miyamoto S., Fuzzy C-means clustering for data with clusterwise tolerance based on L2- and L1-regularization, Journal of Advanced Computational Intelligence and Intelligent Informatics, 15, 1, 2011, 68-75.10.20965/jaciii.2011.p0068
  8. [8] Höppner F., Klawonn F., Kruse R., Runkler T., Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition, John Wiley & Sons, Chichester, 1999.
  9. [9] Kaufmann A., Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, 1975.
  10. [10] Komazaki Y., Miyamoto S., Variables for controlling cluster sizes on fuzzy C-means, in: V. Torra, Y. Narukawa, G. Navarro-Arribas, D. Megías (eds.), Modeling Decisions for Artificial Intelligence: Proceedings of the 10th International Conference MDAI’2013, Barcelona, Spain, November 20-22, 2013, Springer, Berlin, 2013, 192-203.
  11. [11] Krishnapuram R., Keller J.M., A possibilistic approach to clustering, IEEE Transactions on Fuzzy Systems, 1, 2, 1993, 98-110.10.1109/91.227387
  12. [12] Łęski J.M., Robust possibilistic clustering, Archives of Control Sciences, 10, 3/4, 2000, 141-155.
  13. [13] Mandel I.D., Clustering Analysis, Finansy i Statistica, Moscow, 1988. (in Russian)
  14. [14] Ménard M., Courboulay V., Dardignac P.-A., Possibilistic and probabilistic fuzzy clustering: unification within the framework of the non-extensive thermostatistics, Pattern Recognition, 36, 6, 2003, 1325-1342.10.1016/S0031-3203(02)00049-3
  15. [15] Miyamoto S., Ichihashi H., Honda K., Algorithms for Fuzzy Clustering. Methods in C-Means Clustering with Applications, Springer, Berlin, 2008.
  16. [16] Miyamoto S., Different objective functions in fuzzy C-means algorithms and kernel-based clustering, International Journal of Fuzzy Systems, 13, 2, 2011, 89-97.
  17. [17] Pedrycz W., Fuzzy sets in pattern recognition: methodology and methods, Pattern Recognition, 23, 1/2, 1990, 121-146.10.1016/0031-3203(90)90054-O
  18. [18] Sato-Ilic M., Jain L.C., Innovations in Fuzzy Clustering. Theory and Applications, Springer, Berlin, 2006.
  19. [19] Sneath P.H.A., Sokal R., Numerical Taxonomy, Freeman, San Francisco, 1973.
  20. [20] Tamura S., Higuchi S., Tanaka, K., Pattern classification based on fuzzy relations, IEEE Transactions on Systems, Man, and Cybernetics, 1, 1, 1971, 61-66.10.1109/TSMC.1971.5408605
  21. [21] Vapnik V.N., Statistical Learning Theory, Wiley, New York, 1998.
  22. [22] Viattchenin D.A., A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications, Springer, Berlin, 2013.10.1007/978-3-642-35536-3
  23. [23] Viattchenin D.A., Damaratski A., Direct heuristic algorithms of possibilistic clustering based on transitive approximation of fuzzy tolerance, Informatica Economicá Journal, 17, 3, 2013, 5-15.10.12948/issn14531305/17.3.2013.01
  24. [24] Viattchenin D.A., Yaroma A., Damaratski A., A novel direct relational heuristic algorithm of possibilistic clustering, International Journal of Computer Applications, 107, 18, 2014, 15-21.10.5120/18850-0381
  25. [25] Walesiak M., Ugólniona Miara Odległości w Statystycznej Analizie Wielowymiarowej, Wydawnictwo Akademii Ekonomicznej im. Oskara Langego, Wrocław, 2002. (in Polish)
  26. [26] Xie Z., Wang S.T., Chung F.L., An enhanced possibilistic c-means clustering algorithm EPCM, Soft Computing, 12, 6, 2008, 593-611.10.1007/s00500-007-0231-6
  27. [27] Yang M.-S., Wu K.-L., Unsupervised possibilistic clustering, Pattern Recognition, 39, 1, 2006, 5-21.10.1016/j.patcog.2005.07.005
DOI: https://doi.org/10.1515/fcds-2016-0003 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 45 - 76
Submitted on: Mar 24, 2015
Accepted on: Jan 20, 2016
Published on: Mar 31, 2016
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Dmitri A. Viattchenin, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.