Have a personal or library account? Click to login
An Efficient Monte Carlo Approach to Compute PageRank for Large Graphs on a Single PC Cover

An Efficient Monte Carlo Approach to Compute PageRank for Large Graphs on a Single PC

By: Tomohiro Sonobe  
Open Access
|Mar 2016

References

  1. [1] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte carlo methods in pagerank computation: When one iteration is sufficient. SIAM Jounal on Numerical Analysis, (2):890–904, February 2007.10.1137/050643799
  2. [2] Bahman Bahmani, Kaushik Chakrabarti, and Dong Xin. Fast personalized pagerank on mapreduce. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pages 973–984, 2011.10.1145/1989323.1989425
  3. [3] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and personalized pagerank. VLDB Endow., 4(3):173–184, 2010.10.14778/1929861.1929864
  4. [4] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In Proceedings of the Thirteenth International World Wide Web Conference (WWW 2004), pages 595–601, 2004.10.1145/988672.988752
  5. [5] Yenyu Chen, Qingqing Gan, and Torsten Suel. Local methods for estimating pagerank values. In Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pages 381–389, 2004.10.1145/1031171.1031248
  6. [6] Shumo Chu and James Cheng. Triangle listing in massive networks and its applications. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 672–680, 2011.10.1145/2020408.2020513
  7. [7] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph streams. In Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 69–78, 2008.10.1145/1376916.1376928
  8. [8] Atish Das Sarma, AnisurRahaman Molla, Gopal Pandurangan, and Eli Upfal. Fast distributed pagerank computation. In Distributed Computing and Networking, pages 11–26. 2013.10.1007/978-3-642-35668-1_2
  9. [9] Dániel Fogaras and Balázs Rácz. Towards scaling fully personalized pagerank. In Algorithms and Models for the Web-Graph, pages 105–117. 2004.10.1007/978-3-540-30216-2_9
  10. [10] Wookshin Han, Sangyeon Lee, Kyungyeol Park, Jeonghoon Lee, Minsoo Kim, Jinha Kim, and Hwanjo Yu. Turbograph: a fast parallel graph engine handling billion-scale graphs in a single pc. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 77–85, 2013.
  11. [11] Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and Gene Golub. Exploiting the block structure of the web for computing pagerank. Stanford University Technical Report, 2003.
  12. [12] U. Kang and Christos Faloutsos. Big graph mining: Algorithms and discoveries. SIGKDD Explorations Newsletter, (2):29–36, April 2013.10.1145/2481244.2481249
  13. [13] Christian Kohlschütter, Paul-Alexandru Chirita, and Wolfgang Nejdl. Efficient parallel computation of pagerank. In Advances in Information Retrieval, pages 241–252. 2006.10.1007/11735106_22
  14. [14] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a social network or a news media? In Proceedings of the 19th International Conference on World Wide Web, pages 591–600, 2010.10.1145/1772690.1772751
  15. [15] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just a pc. In Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation, pages 31–46, 2012.
  16. [16] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pages 135–146, 2010.10.1145/1807167.1807184
  17. [17] Frank McSherry. A uniform approach to accelerated pagerank computation. In Proceedings of the 14th international conference on World Wide Web, pages 575–582, 2005.10.1145/1060745.1060829
  18. [18] Julie L Morrison, Rainer Breitling, Desmond J Higham, and David R Gilbert. Generank: using search engine technology for the analysis of microarray experiments. BMC bioinformatics, (1):233, 2005.
  19. [19] Mark E. J. Newman. Fast algorithm for detecting community structure in networks. Physical review E, 69(6):066133, 2004.10.1103/PhysRevE.69.06613315244693
  20. [20] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing order to the web. 1999.
  21. [21] Jiayu Pan, Hyungjeong Yang, Christos Faloutsos, and Pinar Duygulu. Automatic multimedia cross-modal correlation discovery. In Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 653–658, 2004.10.1145/1014052.1014135
  22. [22] Marcin Sydow. Random surfer with back step. Fundamental Informaticae, 68(4):379–398, 2005.
  23. [23] John Wicks and Amy Greenwald. Parallelizing the computation of pagerank. In Algorithms and Models for the Web-Graph, pages 202–208. 2007.10.1007/978-3-540-77004-6_17
  24. [24] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pages 1–8, 2012.10.1145/2350190.2350193
DOI: https://doi.org/10.1515/fcds-2016-0002 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 29 - 43
Submitted on: Jan 27, 2015
Accepted on: Jan 30, 2016
Published on: Mar 31, 2016
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Tomohiro Sonobe, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.