[1] Asuncion A., Newman D., UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences (2007) http://www. ics.uci.edu/~mlearn/MLRepository.html.
[2] Boser B., Guyon I., Vapnik V.A., A training algorithm for optimal margin classifiers, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, ACM Press, 1992, 144-152.10.1145/130385.130401
[5] Franc V., Sonnenburg S., Optimized cutting plane algorithm for support vector machines, ICML 08: Proceedings of the 25th international conference on Machine learning, ACM Press 2008, 320-327.10.1145/1390156.1390197
[7] Hsieh C., Chang K., Li C.J., A comparison of methods for multi-class support vector machines, IEEE Transactions on Neural Networks, 13, 2002, 415-425.10.1109/72.99142718244442
[8] Hsieh C., Chang K., Lin C.J., Keerthi S., Sundararajan S., A dual coordinate descent method for large-scale linear SVM, Proceedings of the 25th international conference on Machine learning, ACM, 2008, 408-415.10.1145/1390156.1390208
[11] Joachims T., Training linear SVMs in linear time, ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, 2006, 217-226.10.1145/1150402.1150429
[13] Joachims T., Yu C.N., Sparse kernel svms via cutting-plane training, Machine Learning, Special Issue for European Conference on Machine Learning, 76, 2-3, 2009, 179-193.10.1007/s10994-009-5126-6
[14] Mangasarian O., Musicant D., Successive overrelaxation for support vector machines, IEEE Transactions on Neural Networks, 10, 5, 1999, 1032-1037.10.1109/72.78864318252605
[16] Mercer J., Functions of positive and negative type and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London, 1909.
[19] Frieb T., Cristianini N., Campbell C., The kernel-adatron algorithm: a fast and simple learning procedure for support vector machines, Proceedings of the Fifteenth International Conference on Machine Learning, Morgan Kaufmann Publishers, 1998.
[22] Yuan G.X., Ho C.H., Lin C.J., Recent Advances of Large-scale Linear Classifi- cation, Proceedings of the IEEE, 100, 2012, 2584-2603.10.1109/JPROC.2012.2188013
[23] Zanni L., Serafini T., Zanghirati G., Parallel software for training large scale support vector machines on multiprocessor systems, Journal of Maching Learning Research, 7, 2006, 1467-1492.
[24] Osuna E., Freund R., Girosi F., Training support vector machines: An application to face detection, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, 276-285.
[25] Arnosti N.A., Kalita J.K., Cutting Plane Training for Linear Support Vector Machines, IEEE Transactions on Knowledge and Data Engineering, 25, 2013, 1186-1190.10.1109/TKDE.2011.247
[26] Platt J.-C., Fast training of support vector machines using sequential minimal optimization, in: B. Scholkopf, C.J.C. Burges, A.J. Smola(Eds.), Advances in kernel methods-support vector learning, MIT press, 1999, 185-208.10.7551/mitpress/1130.003.0016
[29] Tian Y.J., Qi Z.Q., Ju X.C., Shi Y., Liu X.H., Nonparallel support vector machines for pattern classification, IEEE Trans. Cybernetics, 44, 7, 2013, 1067-1079.10.1109/TCYB.2013.227916724013833