Have a personal or library account? Click to login
Micro RNAs: an arguable appraisal in medicine Cover

Micro RNAs: an arguable appraisal in medicine

Open Access
|May 2016

References

  1. Abdalla MA, Haj-Ahmad Y. Promising Candidate Urinary MicroRNA Biomarkers for the Early Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients. J Cancer 3, 19-31, 2012. http://dx.doi.org/10.7150/jca.3.1910.7150/jca.3.19324560522211142
  2. Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56, 1183-1185, 2010. http://dx.doi.org/10.1373/clinchem.2010.14412110.1373/clinchem.2010.14412120395621
  3. Adams BD, Furneaux H, White BA. Th e micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor- alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21, 1132-1147, 2007. http://dx.doi.org/10.1210/me.2007-002210.1210/me.2007-002217312270
  4. Aguado-Fraile E, Ramos E, Conde E, Rodriguez M, Martin-Gomez L, Lietor A, Candela A, Ponte B, Lia-o F, Garcia- Bermejo ML. A Pilot Study Identifying a Set of microRNAs As Precise Diagnostic Biomarkers of Acute Kidney Injury. PLoS One 10, e0127175, 2015. http://dx.doi.org/10.1371/journal.pone.012717510.1371/journal.pone.0127175446958426079930
  5. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108, 5003-5008, 2011. http://dx.doi.org/10.1073/pnas.101905510810.1073/pnas.1019055108306432421383194
  6. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H. MicroRNA-21 (miR-21) posttranscriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128-2136, 2008. http://dx.doi.org/10.1038/sj.onc.121085610.1038/sj.onc.121085617968323
  7. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 144, 1495-1500, 2014. http://dx.doi.org/10.3945/jn.114.19643610.3945/jn.114.196436416247325122645
  8. Basati G, Razavi AE, Pakzad I, Malayeri FA. Circulating levels of the miRNAs, miR-194, and miR-29b, as clinically useful biomarkers for colorectal cancer. Tumour Biol [Epub ahead of print], 2015.10.1007/s13277-015-3967-026318304
  9. Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128, 608-616, 2011. http://dx.doi.org/10.1002/ijc.2537610.1002/ijc.2537620473869
  10. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18, 997-1006, 2008. http://dx.doi.org/10.1038/cr.2008.28210.1038/cr.2008.28218766170
  11. Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6, e17745, 2011. http://dx.doi.org/10.1371/journal.pone.001774510.1371/journal.pone.0017745306016521445232
  12. Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, Lo YM. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54, 482-490, 2008. http://dx.doi.org/10.1373/clinchem.2007.09797210.1373/clinchem.2007.09797218218722
  13. Corbin R, Olsson-Carter K, Slack F. Th e role of microRNAs in synaptic development and function. BMB Rep 42, 131-135, 2009. http://dx.doi.org/10.5483/BMBRep.2009.42.3.13110.5483/BMBRep.2009.42.3.131431549719335998
  14. Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem 285, 35293-35302, 2010. http://dx.doi.org/10.1074/jbc.M110.16006910.1074/jbc.M110.160069297515320826792
  15. Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, Olokpa E, Zariff A, Gunaratne PH, Matzuk MM, Anderson ML. Molecular Profiling Uncovers a p53-Associated Role for MicroRNA-31 in Inhibiting the Proliferation of Serous Ovarian Carcinomas and Other Cancers. Cancer Res 70, 1906−1915, 2010. http://dx.doi.org/10.1158/0008-5472.CAN-09-387510.1158/0008-5472.CAN-09-3875283110220179198
  16. Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol. Cancer Th er 13, 2352-2360, 2014. http://dx.doi.org/10.1158/1535-7163.MCT-14-020910.1158/1535-7163.MCT-14-020925053820
  17. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-1070, 2010. http://dx.doi.org/10.1038/nature0895610.1038/nature08956285540620305636
  18. Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK, Tang T. Th erapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Genes 538, 217−227, 2014. http://dx.doi.org/10.1016/j.gene.2013.12.01910.1016/j.gene.2013.12.01924406620
  19. Devalliere J, Chang WG, Andrejecsk JW, Abrahimi P, Cheng CJ, Jane-wit D, Saltzman WM, Pober JS. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J 28, 908−922, 2014. http://dx.doi.org/10.1096/fj.13-23852710.1096/fj.13-238527389864024221087
  20. DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, Meyers R, Gollob J, Vaishnaw A. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A 107, 8800, 2010. http://dx.doi.org/10.1073/pnas.091218610710.1073/pnas.0912186107288936520421463
  21. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494−498, 2001. http://dx.doi.org/10.1038/3507810710.1038/3507810711373684
  22. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11, 108, 2011. http://dx.doi.org/10.1186/1471-2407-11-10810.1186/1471-2407-11-108307294921439085
  23. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res 717, 85−90, 2011. http://dx.doi.org/10.1016/j.mrfmmm.2011.03.00410.1016/j.mrfmmm.2011.03.004319903521402084
  24. Fang Z, Tang J, Bai Y, Lin H, You H, Jin H, Lin L, You P, Li J, Dai Z, Liang X, Su Y, Hu Q, Wang F, Zhang ZY. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res 34, 86, 2015. http://dx.doi.org/10.1186/s13046-015-0198-610.1186/s13046-015-0198-6454635826297223
  25. Ferreira R, Santos T, Amar A, Gong A, Chen TC, Tahara SM, Giannotta SL, Hofman FM. Argonaute-2 promotes miR-18a entry in human brain endothelial cells. J Am Heart Assoc 3, e000968, 2014. http://dx.doi.org/10.1161/JAHA.114.00096810.1161/JAHA.114.000968430908924837588
  26. Garber KB, Visootsak J, Warren ST. Fragile X syndrome. Eur J Hum Genet 16, 666−672, 2008. http://dx.doi.org/10.1038/ejhg.2008.6110.1038/ejhg.2008.61436915018398441
  27. Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med 85, 187−200, 2012.
  28. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28, 655-661, 2009. http://dx.doi.org/10.1016/j.urolonc.2009.01.027 10.1016/j.urolonc.2009.01.02719375957
  29. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. Th e RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102, 10898-10903, 2005. http://dx.doi.org/10.1073/pnas.050483410210.1073/pnas.0504834102118245416040801
  30. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105, 1516-1521, 2008. http://dx.doi.org/10.1073/pnas.070749310510.1073/pnas.0707493105223417618227515
  31. Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN. Modulation of K-Rasdependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18, 282−293, 2010. http://dx.doi.org/10.1016/j.ccr.2010.08.01310.1016/j.ccr.2010.08.013297166620832755
  32. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105, 6415−6420, 2008. http://dx.doi.org/10.1073/pnas.071026310510.1073/pnas.0710263105235978918434550
  33. Hornby RJ, Starkey Lewis P, Dear J, Goldring C, Park BK. MicroRNAs as potential circulating biomarkers of druginduced liver injury: key current and future issues for translation to humans. Expert Rev Clin Pharmacol 7, 349−362, 2014. http://dx.doi.org/10.1586/17512433.2014.90420110.1586/17512433.2014.90420124694030
  34. Hrustincova A, Votavova H, Dostalova Merkerova M. Circulating MicroRNAs: Methodological Aspects in Detection of Th ese Biomarkers.Folia Biologica (Praha) 61, 203−218, 2015.
  35. Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Research 2, 136, 2013. http://dx.doi.org/10.12688/f1000research.2-136.v110.12688/f1000research.2-136.v1
  36. Ishizuka A, Siomi MC,Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16, 2497−2508, 2002. http://dx.doi.org/10.1101/gad.102200210.1101/gad.102200218745512368261
  37. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med 368, 1685-1694, 2013. http://dx.doi.org/10.1056/NEJMoa120902610.1056/NEJMoa120902623534542
  38. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisensemediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100, 1579-1588, 2007. http://dx.doi.org/10.1161/CIRCRESAHA.106.14198610.1161/CIRCRESAHA.106.14198617478730
  39. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55, 1944-1949, 2009. http://dx.doi.org/10.1373/clinchem.2009.12531010.1373/clinchem.2009.12531019696117
  40. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell 120, 635−647, 2005. http://dx.doi.org/10.1016/j.cell.2005.01.01410.1016/j.cell.2005.01.01415766527
  41. Jose AM. Movement of regulatory RNA between animal cells. Genesis 53, 395−416, 2015. http://dx.doi.org/10.1002/dvg.2287110.1002/dvg.22871491534826138457
  42. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K. Dicerdeficient mouse embryonic stem cells are defective in diff erentiation and centromeric silencing. Genes Dev 19, 489-501, 2005. http://dx.doi.org/10.1101/gad.124850510.1101/gad.124850554894915713842
  43. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, Lim SC, Sum CF, Jeyaseelan K. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97, E2271-E2276, 2012. http://dx.doi.org/10.1210/jc.2012-199610.1210/jc.2012-199623032062
  44. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96, 111-115, 2005. http://dx.doi.org/10.1111/j.1349
  45. Katsuda T, Kosaka N, Ochiya T. Th e roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14, 412−425, 2014. http://dx.doi.org/10.1002/pmic.20130038910.1002/pmic.20130038924339442
  46. Kim HS, Lee KS, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Yang HD, Park M, Park WS, Kang YK, Nam SW. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget 6, 8089-8102, 2015. http://dx.doi.org/10.18632/oncotarget.351210.18632/oncotarget.3512448073725797269
  47. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18, 1165−1178, 2004. http://dx.doi.org/10.1101/gad.118470410.1101/gad.118470441564115131085
  48. Koldehoff M, Steckel NK, Beelen DW, Elmaagacli AH. Th erapeutic application of small interfering RNA directed against bcr-abl transcripts to a patient with imatinib-resistant chronic myeloid leukaemia. Clin Exp Med 7, 47−55, 2007. http://dx.doi.org/10.1007/s10238-007-0125-z 10.1007/s10238-007-0125-z17609876
  49. Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 25, 125−130, 2011. http://dx.doi.org/10.1101/gad.197541110.1101/gad.1975411302225821245165
  50. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285, 17442−17452, 2010. http://dx.doi.org/10.1074/jbc.M110.10782110.1074/jbc.M110.107821287850820353945
  51. Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One 6, e24234, 2011. http://dx.doi.org/10.1371/journal.pone.002423410.1371/journal.pone.0024234316782721915303
  52. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101, 59-68, 2007. http://dx.doi.org/10.1161/CIRCRESAHA.107.15391610.1161/CIRCRESAHA.107.15391617540974
  53. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105, 3903−3908, 2008. http://dx.doi.org/10.1073/pnas.071232110510.1073/pnas.0712321105226882618308936
  54. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739, 2002. http://dx.doi.org/10.1016/S0960-9822(02)00809-610.1016/S0960-9822(02)00809-6
  55. Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Th er Nucleic Acids 4, e252, 2015. http://dx.doi.org/10.1038/mtna.2015.2310.1038/mtna.2015.23
  56. Lee RC, Feinbaum RL, Ambros V. Th e C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854, 1993. http://dx.doi.org/10.1016/0092-8674(93)90529-Y 10.1016/0092-8674(93)90529-Y
  57. Lee KH, Kim SH, Lee HR, Kim W, Kim DY, Shin JC, Yoo SH, Kim KT. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell 24, 2248-2255, 2013. http://dx.doi.org/10.1091/mbc.E12-12-084910.1091/mbc.e12-12-0849370873023699394
  58. Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, Jin Y. Th e promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials. 34, 5048-5058, 2013. http://dx.doi.org/10.1016/j.biomaterials.2013.03.05210.1016/j.biomaterials.2013.03.05223578559
  59. Li H, Cheng Wu C, Aramayo R, Sachs MS, Harlowa ML. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA). Sci Rep 5, 14918, 2015. http://dx.doi.org/10.1038/srep1491810.1038/srep14918459735926446566
  60. Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, Xiao Z. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2, 380−388, 2014. http://dx.doi.org/10.1002/fsn3.11310.1002/fsn3.113422183625473495
  61. Liu WH, Yeh SH, Lu CC, Yu SL, Chen HY, Lin CY, Chen DS, Chen PJ. MicroRNA-18a prevents estrogen receptoralpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology 136, 683−693, 2009. http://dx.doi.org/10.1053/j.gastro.2008.10.02910.1053/j.gastro.2008.10.02919027010
  62. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30, 92-101, 2010a. http://dx.doi.org/10.1038/jcbfm.2009.18610.1038/jcbfm.2009.186294908919724284
  63. Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, Dragnev KH, Li H, Direnzo J, Bak M, Freemantle SJ, Kauppinen S, Dmitrovsky E. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 120, 1298−309, 2010b. http://dx.doi.org/10.1172/JCI3956610.1172/JCI39566284604120237410
  64. Liu M, Zhi Q, Wang W, Zhang Q, Fang T, Ma Q. Up-regulation of miR-592 correlates with tumor progression and poor prognosis in patients with colorectal cancer. Biomed Pharmacother 69, 214−220, 2015. http://dx.doi.org/10.1016/j.biopha.2014.12.00110.1016/j.biopha.2014.12.00125661360
  65. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13, 178, 2013. http://dx.doi.org/10.1186/1471-2377-13-17810.1186/1471-2377-13-178384058424237608
  66. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 435, 834−838, 2005. http://dx.doi.org/10.1038/nature0370210.1038/nature0370215944708
  67. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH, Dombkowski DM, Preffer FI, Scadden DT, Golub TR. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14, 843−853, 2008. http://dx.doi.org/10.1016/j.devcel.2008.03.01210.1016/j.devcel.2008.03.012268878918539114
  68. Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, Ohkuchi A, Matsubara S, Takeshita T,Takizawa T. Human villous trophoblasts express and secrete placenta specific microRNAs into maternal circulation via exosomes. Biol Reprod 81, 717−729, 2009. http://dx.doi.org/10.1095/biolreprod.108.075481 10.1095/biolreprod.108.07548119494253
  69. Luo H, Zou J, Dong Z, Zeng Q, Wu D, Liu L. Up-regulated miR-17 promotes cell proliferation, tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma. Biochem J 442, 311−321, 2012. http://dx.doi.org/10.1042/BJ2011151710.1042/BJ2011151722132820
  70. Ma R, Jiang T, Kang X. Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 31, 38, 2012. http://dx.doi.org/10.1186/1756-9966-31-3810.1186/1756-9966-31-38343199122546315
  71. Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology 77, 1265.e9−16, 2011. http://dx.doi.org/10.1016/j.urology.2011.01.02010.1016/j.urology.2011.01.02021539977
  72. Makeyev EV, Zhang J, Carrasco MA, Maniatis T. Th e MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNAsplicing. Mol Cell 27, 435−448, 2007. http://dx.doi.org/10.1016/j.molcel.2007.07.01510.1016/j.molcel.2007.07.015313945617679093
  73. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513-10518, 2008. http://dx.doi.org/10.1073/pnas.080454910510.1073/pnas.0804549105249247218663219
  74. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Diff er 20, 1603−1614, 2013. http://dx.doi.org/10.1038/cdd.2013.12510.1038/cdd.2013.125382459124212931
  75. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3, eCollection, 2014. http://dx.doi.org/10.3402/jev.v3.2464110.3402/jev.v3.24641412282125143819
  76. Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, Imura Y, Fujii T, Ito H, Mimori T, Matsuda S. Comprehensive microRNA Analysis Identifies miR-24 and miR-125a-5p as Plasma Biomarkers for Rheumatoid Arthritis. PLoS One 8, e69118, 2013. http://dx.doi.org/10.1371/journal.pone.006911810.1371/journal.pone.0069118371546523874885
  77. Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J 276, 5447-5455, 2009. http://dx.doi.org/10.1111/j.1742-4658.2009.07229.x 10.1111/j.1742-4658.2009.07229.x19682069
  78. Nielsen LB, Wang C, Sorensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A, Zhang CY, Pociot F, Mortensen HB. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012, 896362, 2012. http://dx.doi.org/10.1155/2012/89636210.1155/2012/896362339860622829805
  79. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5, e13247, 2010. http://dx.doi.org/10.1371/journal.pone.001324710.1371/journal.pone.0013247295191220949044
  80. Pang J, Xiong H, Yang H, Ou Y, Xu Y, Huang Q, Lai L, Chen S, Zhang Z, Cai Y, Zheng Y. Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol 76, 58−67, 2016. http://dx.doi.org/10.1016/j.exger.2016.01.00910.1016/j.exger.2016.01.00926802970
  81. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15, 5473-5477, 2009. http://dx.doi.org/10.1158/1078-0432.CCR-09-073610.1158/1078-0432.CCR-09-0736275235519706812
  82. Pedersen I, David M. MicroRNAs in the immune response. Cytokine 43, 391−394, 2008. http://dx.doi.org/10.1016/j.cyto.2008.07.01610.1016/j.cyto.2008.07.016364299418701320
  83. Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE. Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebell arataxia pathogenesis. Neurobiol Aging 32, 2316. e17−27, 2011. http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.01410.1016/j.neurobiolaging.2010.03.01420451302
  84. Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5, e13515, 2010. http://dx.doi.org/10.1371/journal.pone.001351510.1371/journal.pone.0013515295812520976003
  85. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068-3071, 2006. http://dx.doi.org/10.1182/blood-2006-01-01236910.1182/blood-2006-01-01236916849646
  86. Poy MN, Spranger M, Stoffel M. microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9, 67−73, 2007. http://dx.doi.org/10.1111/j.1463-1326.2007.00775.x 10.1111/j.1463-1326.2007.00775.x17919180
  87. Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari M. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5, 492−497, 2012. http://dx.doi.org/10.1158/1940-6207.CAPR-11-0370 10.1158/1940-6207.CAPR-11-0370418624322158052
  88. Redis RS, Calin S, Yang Y, You MJ, Calin GA. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Th er 136, 169−174, 2012. http://dx.doi.org/10.1016/j.pharmthera.2012.08.00310.1016/j.pharmthera.2012.08.003385533522903157
  89. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80, 193−208, 2011. http://dx.doi.org/10.1016/j.critrevonc.2010.11.00410.1016/j.critrevonc.2010.11.00421145252
  90. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. Th e 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906, 2000. http://dx.doi.org/10.1038/3500260710.1038/3500260710706289
  91. Roese-Koerner B, Stappert L, Koch P, Brustle O, Borghese L. Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr Mol Med 13, 707−722, 2013. http://dx.doi.org/10.2174/156652401131305000310.2174/156652401131305000323642053
  92. Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299, L861−871, 2010. http://dx.doi.org/10.1152/ajplung.00201.201010.1152/ajplung.00201.2010300627320693317
  93. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100, 416−424, 2007. http://dx.doi.org/10.1161/01.RES.0000257913.42552.2310.1161/01.RES.0000257913.42552.2317234972
  94. Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice. PLoS One 6, e22586, 2011. http://dx.doi.org/10.1371/journal.pone.002258610.1371/journal.pone.0022586314218721799909
  95. Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282, 32582−32590, 2007. http://dx.doi.org/10.1074/jbc.M70280620010.1074/jbc.M70280620017827156
  96. Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, deVere White RW. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 32, 4130−4138, 2013. http://dx.doi.org/10.1038/onc.2012.42510.1038/onc.2012.425411147923069658
  97. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283-289, 2006. http://dx.doi.org/10.1038/nature0436710.1038/nature0436716421561
  98. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M. Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8, 1432−4146, 2014. http://dx.doi.org/10.1016/j.celrep.2014.07.03510.1016/j.celrep.2014.07.03525159140
  99. Su YW, Chen X, Jiang ZZ, Wang T, Wang C, Zhang Y, Wen J, Xue M, Zhu D, Zhang Y, Su YJ, Xing TY, Zhang CY, Zhang LY. A panel of serum microRNAs as specific biomarkers for diagnosis of compound- and herb-induced liver injury in rats. PLoS One 7, e37395, 2012. http://dx.doi.org/10.1371/journal.pone.003739510.1371/journal.pone.0037395335625522624025
  100. Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, Zhang CY, Chen J, Zhang J. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem 288, 9508−9518, 2013. http://dx.doi.org/10.1074/jbc.M112.36776310.1074/jbc.M112.367763361101923322774
  101. Sun X, Yang Z, Zhang Y, He J, Wang F, Su P, Han J, Song Z, Fei Y. Prognostic implications of tissue and serum levels of microRNA-128 in human prostate cancer. Int J Clin Exp Pathol 8, 8394−8401, 2015.
  102. Silvestre JS, Mallat Z, Tedgui A, Levy BI. Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78, 242-249. 2008. http://dx.doi.org/10.1093/cvr/cvn027.10.1093/cvr/cvn02718252762
  103. Szafranski K, Abraham KJ, Mekhail K. Non-coding RNA in neural function, disease, and aging. Front Genet 6, 87, eCollection 2015. http://dx.doi.org/10.3389/fgene.2015.0008710.3389/fgene.2015.00087435337925806046
  104. Tang P, Xiong Q, Ge W, Zhang L. Th e role of microRNAs in osteoclasts and osteoporosis. RNA Biol 11, 1355-1363, 2014. http://dx.doi.org/10.1080/15476286.2014.99646210.1080/15476286.2014.996462461557125692234
  105. Tang R, Yang C, Ma X, Wang Y, Luo D, Huang C, Xu Z, Liu P, Yang L. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget, 7, 5972-5984. 2016. http://dx.doi.org/10.18632/oncotarget.682110.18632/oncotarget.6821486873426745603
  106. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20, 2202-2207, 2006. http://dx.doi.org/10.1101/gad.144440610.1101/gad.1444406155320316882971
  107. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE. A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7, 279ra38, 2015. http://dx.doi.org/10.1126/scitranslmed.301084110.1126/scitranslmed.3010841629531325787764
  108. Title AC, Denzler R, Stoffel M. Uptake and Function Studies of Maternal Milk-derived MicroRNAs. J Biol Chem 290, 23680−23691, 2015. http://dx.doi.org/10.1074/jbc.M115.676734 10.1074/jbc.M115.676734458303126240150
  109. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, Kusunoki M, Boland CR, Goel A. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 105, 849−859, 2013. http://dx.doi.org/10.1093/jnci/djt10110.1093/jnci/djt101368736923704278
  110. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 39, 7223−7233, 2011. http://dx.doi.org/10.1093/nar/gkr25410.1093/nar/gkr254316759421609964
  111. Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani KM, Alder H, Amadori D, Patel T, Nuovo GJ, Fishel R, Croce CM. MicroRNA-21 induces resistance to 5-fl uorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A 107, 21098−21103, 2010. http://dx.doi.org/10.1073/pnas.1015541107 10.1073/pnas.1015541107300029421078976
  112. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103, 18255-18260, 2006. http://dx.doi.org/10.1073/pnas.0608791103 10.1073/pnas.0608791103183873917108080
  113. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575−579, 2007. http://dx.doi.org/10.1126/science.1139089 10.1126/science.113908917379774
  114. van Rooij E, Olson EN. Searching for miR-acles in cardiac fibrosis. Circ Res 104, 138−140, 2009. http://dx.doi.org/10.1161/CIRCRESAHA.108.19249210.1161/CIRCRESAHA.108.192492274725119179664
  115. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins: Nat Cell Biol 13, 423−433, 2011. http://dx.doi.org/10.1038/ncb221010.1038/ncb2210307461021423178
  116. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 106, 4402-4407, 2009a. http://dx.doi.org/10.1073/pnas.081337110610.1073/pnas.0813371106265742919246379
  117. Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, Chen HY, Sun XF. Clinicopathological signifi cance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers 26, 27-34, 2009b. http://dx.doi.org/10.1155/2009/92190710.1155/2009/921907
  118. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38, 7248-7259, 2010a. http://dx.doi.org/10.1093/nar/gkq60110.1093/nar/gkq601297837220615901
  119. Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer 10, 616, 2010b. http://dx.doi.org/10.1186/1471-2407-10-61610.1186/1471-2407-10-616299482221062447
  120. Wang B, Zhang Q. Th e expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol 138, 1659-1666, 2012. http://dx.doi.org/10.1007/s00432-012-1244-910.1007/s00432-012-1244-922638884
  121. Wang Q, Huang Z, Ni S, Xiao X, Xu Q, Wang L, Huang D, Tan C, Scheng W, Du X. Plasma miR-601 and miR-760 Are Novel Biomarkers for the Early Detection of Colorectal Cancer. PLoS One 7, e44398, 2012a. http://dx.doi.org/10.1371/journal.pone.004439810.1371/journal.pone.0044398343531522970209
  122. Wang H, Peng W, Ouyang X, Li W, Dai Y. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl Res 160, 198-206, 2012b. http://dx.doi.org/10.1016/j.trsl.2012.04.00210.1016/j.trsl.2012.04.00222683424
  123. Wang YC, Li Y, Wang XY, Zhang D, Zhang H, Wu Q, He YQ, Wang JY, Zhang L, Xia H, Yan J, Li X, Ying H. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 56, 2275-2285, 2013. http://dx.doi.org/10.1007/s00125-013-2996-810.1007/s00125-013-2996-823868745
  124. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-Related Circulating miRNAs as Novel and Sensitive Predictors for Acute Myocardial Infarction. PLoS One 9, e105734, 2014. http://dx.doi.org/10.1371/journal.pone.010573410.1371/journal.pone.0105734415358625184815
  125. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017−5022, 2007. http://dx.doi.org/10.1038/sj.onc.121029310.1038/sj.onc.1210293
  126. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene Lin-14 by Lin-4 mediates temporal pattern-formation in C.elegans. Cell 75, 855-862, 1993. http://dx.doi.org/10.1016/0092-8674(93)90530-410.1016/0092-8674(93)90530-4
  127. Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. Bioessays 36, 394−406, 2014. http://dx.doi.org/10.1002/bies.20130015010.1002/bies.201300150410982524436255
  128. Wu CW, Dong YJ, Liang QY, He XQ, Ng SS, Chan FK, Sung JJ, Yu J. MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS One 8, e57036, 2013. http://dx.doi.org/10.1371/journal.pone.0057036 10.1371/journal.pone.0057036357880223437304
  129. Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F, Herrmann E, Walgenbach-Brunagel G, von Ruecker A, Muller SC, Ellinger J. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One 6, e25787, 2011. http://dx.doi.org/10.1371/journal.pone.002578710.1371/journal.pone.0025787318417321984948
  130. Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y, Wu C, Zheng X, Du Q, Lin D, Liang Z. An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples. FEBS J 277, 1684−1694, 2010. http://dx.doi.org/10.1111/j.1742-4658.2010.07594.x 10.1111/j.1742-4658.2010.07594.x20180843
  131. Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 42, 219−228, 2013. http://dxdoi/10.3892/ijo.2012.1707.10.3892/ijo.2012.170723174819
  132. Xu RS, Wu XD, Zhang SQ, Li CF, Yang L, Li DD, Zhang BG, Zhang Y, Jin JP, Zhang B. Th e tumor suppressor gene RhoBTB1 is a novel target of miR-31 in human colon cancer. Int J Oncol 42, 676−682, 2013. http://dxdoi/10.3892/ijo.2012.174610.3892/ijo.2012.174623258531
  133. Xu L, Li M, Wang M, Yan D, Feng G, An G. The expression of microRNA-375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer 14, 714, 2014. http://dx.doi.org/10.1186/1471-2407-14-71410.1186/1471-2407-14-714418138825255814
  134. Yamada H, Itoh M, Hiratsuka I, Hashimoto S. Circulating microRNAs in autoimmune thyroid diseases. Clin Endocrinol (Oxf) 81, 276−281, 2014. http://dx.doi.org/10.1111/cen.1243210.1111/cen.1243224533739
  135. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. Th e muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13, 486-491, 2007. http://dx.doi.org/10.1038/nm156910.1038/nm156917401374
  136. Yang Z, Chen H, Si H, Li X, Ding X, Sheng Q, Chen P, Zhang H. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 51, 823−831, 2014. http://dx.doi.org/10.1007/s00592-014-017-8
  137. Yang Y, Chang S, Zhao Z, Hou NI, He K, Wang X, Gao L, Wang L, Cai D, Guo BO, Tong D, Song T, Huang C. MicroRNA-214 suppresses the proliferation of human hepatocellular carcinoma cells by targeting E2F3. Oncol Lett 10, 3779-3784, 2015. http://dx.doi.org/10.3892/ol.2015.374510.3892/ol.2015.3745466588326788207
  138. Ye W, Lv Q, Wong C-KA, Hu S, Fu C, Hua Z, Cai G, Li G, Yang BB, Zhang Y. The Effect of Central Loops in miRNA:MRE Duplexes on the Efficiency of miRNA-Mediated Gene Regulation. PLoS One 3, e1719, 2008. http://dx.doi.org/10.1371/journal.pone.000171910.1371/journal.pone.0001719224870818320040
  139. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. Plasma microRNA profi ling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107, 810-817, 2010. http://dx.doi.org/10.1161/CIRCRESAHA.110.22635710.1161/CIRCRESAHA.110.22635720651284
  140. Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 93, 555−562, 2012. http://dx.doi.org/10.1093/cvr/cvr26610.1093/cvr/cvr266329108622028337
  141. Zeng W, Tu Y, Zhu Y, Wang Z, Li C, Lao L, Wu G. Predictive power of circulating miRNAs in detecting colorectal cancer. Tumour Biol 36, 2559−2567, 2015. http://dx.doi.org/10.1007/s13277-014-2872-210.1007/s13277-014-2872-225527153
  142. Zhang B, Wang Q, Pan X. MicroRNA and Th eir Regulatory Roles in Animals and Plants. J Cell Physiol 210, 279-289, 2007a. http://dx.doi.org/10.1002/jcp.2086910.1002/jcp.2086917096367
  143. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 302, 1-12, 2007b. http://dx.doi.org/10.1016/j.ydbio.2006.08.02810.1016/j.ydbio.2006.08.02816989803
  144. Zhang C. MicroRNAs: role in cardiovascular biology and disease. Clin Sci (Lond) 114, 699-706, 2008. http://dx.doi.org/10.1042/CS2007021110.1042/CS2007021118474027
  145. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88, 1358-1366, 2008. http://dx.doi.org/10.1038/labinvest.2008.9410.1038/labinvest.2008.9418794849
  146. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22, 107-126, 2012. http://dx.doi.org/10.1038/cr.2011.17410.1038/cr.2011.174
  147. Zheng L, Xu CC, Chen WD, Shen WL, Ruan CC, Zhu LM, Zhu DL, Gao PJ. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem Biophys Res Commun 400, 483−488, 2010. http://dx.doi.org/10.1016/j.bbrc.2010.08.06710.1016/j.bbrc.2010.08.06720735984
  148. Zong L, Zhu Y, Liang R, Zhao HB. Gap junction mediated miRNA intercellular transfer and gene regulation: A novel mechanism for intercellulargenetic communication. Sci Rep 6, 19884, 2016. http://dx.doi.org/10.1038/srep1988410.1038/srep19884472848726814383
  149. Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14, 843−856, 2015. http://dx.doi.org/10.1038/nrd468510.1038/nrd468526567702
DOI: https://doi.org/10.1515/enr-2016-0013 | Journal eISSN: 1336-0329 | Journal ISSN: 1210-0668
Language: English
Page range: 106 - 124
Published on: May 18, 2016
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 K. Voglova, J. Bezakova, Iveta Herichova, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.