Have a personal or library account? Click to login
Effects of Electromagnetic Fields and their Shielding on the Quality of Carrot (Daucus Carota L.) Seeds Cover

Effects of Electromagnetic Fields and their Shielding on the Quality of Carrot (Daucus Carota L.) Seeds

Open Access
|Jan 2020

References

  1. [1] Araújo SdeS, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A. Physical methods for seed invigoration: Advantages and challenges in seed technology. Front Plant Sci. 2016;12(7):646. DOI: 10.3389/fpls.2016.00646.10.3389/fpls.2016.00646486389327242847
  2. [2] Das R, Bhattacharya R. Impact of electromagnetic field on seed germination. Proc XXVIIIth URSI General Assembly, New Delhi, India, October 2005. ISBN Proceedings 8177649280. Paper KP.14(0983). www.ursi.org/proceedings/procGA05/pdf/KP.14(0983).pdf.
  3. [3] Dannehl D. Effects of electricity on plant responses. Sci Hortic. 2018;234:382-92. DOI: 10.1016/j.scienta.2018.02.007.10.1016/j.scienta.2018.02.007
  4. [4] Pietruszewski S, Kania K. Effect of magnetic field on germination and yield of wheat. Int Agrophys. 2010;24:297-302. http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2010_24_3_297.pdf.
  5. [5] Jedlička J, Paulen O, Ailer Š. Research of effect of low frequency magnetic field on germination, growth and fruiting of field tomatoes. Acta Horticulturae et Regiotecturae 2015;1:1-4. DOI: 10.1515/ahr-2015-0001.10.1515/ahr-2015-0001
  6. [6] Hasan GT, Ali KJ, Ahmad MA. Investigation the influence of magnetic field emitted by high voltage transmission lines on plant growth. Eur J Sci Res. 2011;56(2):272-8. https://www.researchgate.net/publication/289882505_Investigation_the_influence_of_magnetic_field_emitted_by_high_voltage_transmission_lines_on_plant_growth.
  7. [7] Bhattacharya R, Barman P. 132 KV high voltage power transmission line and stress on Brassica juncea. Int J Electronics Commun Technol. 2013;4(1):140-2. http://www.iject.org/vol4/spl1/c0047.pdf.
  8. [8] Rochalska M, Grabowska-Topczewska K, Mackiewicz A. Influence of low magnetic field on improvement of seed quality. Int Agrophys. 2011;25(3):265-9. http://www.international-agrophysics.org/Influence-of-alternating-low-frequency-magnetic-field-on-improvement-of-seed-quality,106320,0,2.html.
  9. [9] Balakhnina T, Bulak P, Nosalewicz M, Pietruszewski S, Włodarczyk T. The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant. 2015;37:59. DOI: 10.1007/s11738-015-1802-2.10.1007/s11738-015-1802-2
  10. [10] Vashisth A, Singh R, Joshi DK. Effect of static magnetic field on germination and seedling attributes in tomato (Solanum lycopersicum). J Agr Phys. 2013;13(2):182-5. https://pdfs.semanticscholar.org/2f8b/6dd294e2db9d567ccc390f63ed23bd4db2c9.pdf.
  11. [11] Hozayn M, El-Mahdy AAA, Abdel-Rahman HMH. Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). Afr J Agric Res. 2015;10(8):849-57. DOI: 10.5897/AJAR2014.9383.10.5897/AJAR2014.9383
  12. [12] Grzesik M, Górnik K, Janas R, Lewandowski M, Romanowska-Duda Z, van Duijn B. High efficiency stratification of apple cultivar Ligol seed dormancy by phytohormones, heat shock and pulsed radio frequency. J Plant Physiol. 2017;219:81-90. DOI: 10.1016/j.jplph.2017.09.007.10.1016/j.jplph.2017.09.00729040901
  13. [13] Wosiński S. Solution for Impregnation of materials shielding low-frequency electric field and the shielding material. PAT.221223. http://regserv.uprp.pl/register/application?number=P.387274.
  14. [14] Wosiński S. A composition for impregnating materials to shield against the effects of alternating electromagnetic fields, its application in coating/impregnating fibrous and/or porous matrices and materials containing the same. Patent application 20170349765; 2017. https://patents.justia.com/patent/20170349765.
  15. [15] International Rules for Seed Testing. Chapter 5: The germination test 2019;1:5-56. DOI: 10.15258/istarules.2019.05.10.15258/istarules.2019.05
  16. [16] Joosen RVL, Kodde J, Willems L, Ligterink W, Plas LHW van der, Hilhorst HWM. Germinator: A software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010;62:148-59. DOI: 10.1111/j.1365-313X.2009.04116.x.10.1111/j.1365-313X.2009.04116.x20042024
  17. [17] Malone JP, Muskett AE. Seed borne-fungi. Description of 77 fungus species. Proc Int Seed Test Ass.1964;29(2):179-384. https://pdfslide.net/documents/jp-malone-ae-muskett-seed-borne-fungi-descriptions-of-77-fungus-species.html.
  18. [18] Watanabe T. Pictorial Atlas of Soil and Seed Fungi Morphologies of Cultured Fungi and Key to Species. Boca Raton, London, New York, Washington: CRC Press; 2002. ISBN: 0849311187.10.1201/9781420040821
  19. [19] Mathur SB, Kongsdal O. Common Laboratory Seed Health Testing Methods for Detecting Fungi. Basserdorf, Switzerland: International Seed Testing Association; 2003. ISBN: 3906549356.
  20. [20] Dorna H, Górski R, Szopińska D, Tylkowska K, Jurga J, Wosiński S, et al. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17(1):53-61. https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view.
  21. [21] Racuciu M, Creanga DE. Biological effects of low frequency electromagnetic field in Cucurbita pepo. Proceedings of the Third Moscow Int Symp Magnetism. 26-30 June 2005, Moscow, Russia. 2005;278-82. http://magn.ru/proc/pdf/278.pdf.
  22. [22] Pietruszewski S, Muszyński S, Dziwulska A. Electromagnetic fields and electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses). Int Agrophys. 2007;21:95-100. http://www.international-agrophysics.org/Electromagnetic-fields-and-electromagnetic-radiation-as-noninvasive-external-stimulants,106532,0,2.html.
  23. [23] Shabrangi A, Majd A, Sheidai M. Effects of extremely low frequency electromagnetic fields on growth, cytogenetic, protein content and antioxidant system of Zea mays L. Afr J Biotechnol. 2011;10(46):9362-9. DOI: 10.5897/AJB11.097.10.5897/AJB11.097
  24. [24] Shabrangi A, Hassanpour H, Majd A, Sheidai M. Induction of genetic variation by electromagnetic fields in Zea mays L. and Brassica napus L. Caryologia 2015;68(4):272-9. DOI: 10.1080/00087114.2015.1109920.10.1080/00087114.2015.1109920
  25. [25] Królicka A, Kartanowicz R, Wosiński SA, Szpitter A, Kamiński M, Łojkowska E. Induction of secondary matabolite production in transformer callus of Ammi majus L. grown after electromagnetic treatment of the cuture medium. Enzyme Microb Technol. 2006;39:1386-91. DOI: 10.1016/j.enzmictec.2006.03.04210.1016/j.enzmictec.2006.03.042
  26. [26] Afzal I, Rehman HU, Naveed M, Basra SMA. Recent advanced in seed enhancements. In: New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. 2016:47-74. DOI: 10.5772/64791.10.5772/64791
  27. [27] Grabowska K, Detyna J, Bujak H. Influence of alternating magnetic field on selected plant properties. In: Szrek J, editor. Interdyscyplinarność badań naukowych [Interdysciplinarity of scientific research]. Wrocław: Ofic Wyd Politechniki Wrocławskiej; 2014;165-70. ISBN: 9878374938631. https://www.researchgate.net/publication/273633488.
  28. [28] Zardzewiały M, Zaguła G, Puchalski C. Effects of pre-sowing magnetic stimulation on the growth, development and changes in physicochemical properties in sugar beet seedlings. Teka Commission of Motorization and Power Industry in Agriculture 2014;14(4):201-10. http://www.czasopisma.pan.pl/dlibra/publication/106981/edition/92676/content/effects-of-pre-sowing-magnetic-stimulation-on-the-growth-development-and-changes-in-physicochemical-properties-in-sugar-beet-seedlings-zardzewialy-milosz-zagula-grzegorz-puchalski-czeslaw.
  29. [29] Podleśna A, Bojarszczuk J, Podleśny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in faba bean (Vicia faba L. spp. minor). J. Plant Growth Regul. 2019;38(3):1153-60. DOI: 10.1007/s00344-019-09920-1.10.1007/s00344-019-09920-1
DOI: https://doi.org/10.1515/eces-2019-0055 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 785 - 795
Published on: Jan 21, 2020
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Romuald Górski, Hanna Dorna, Agnieszka Rosińska, Dorota Szopińska, Stanisław Wosiński, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.