Have a personal or library account? Click to login
Bacillus subtilis BS-2 and Peppermint Oil as Biocontrol Agents Against Botrytis cinerea Cover

Bacillus subtilis BS-2 and Peppermint Oil as Biocontrol Agents Against Botrytis cinerea

Open Access
|Oct 2019

References

  1. [1] El-Ghanam AA, Farfour SA, Ragab SS. Bio-suppression of strawberry fruit rot disease caused by Botrytis cinerea. J Plant Pathol Microbiol. 2015;S3:005. DOI: 10.4172/2157-7471.S3-005.10.4172/2157-7471.S3-005
  2. [2] Shternshis MV, Belyaev AA, Shpatova TV, Lelyak AA. Influence of Bacillus spp. on strawberry gray mold causing agent and host plant resistance to disease. Contemp Prob Ecol. 2015;8:390-396. DOI: 10.1134/S1995425515030130.10.1134/S1995425515030130
  3. [3] Ongouya Mouekouba LD, Zhang ZZ, Olajide EK, Wang Ai-Jie, Wang Ao-Xue. Biological control of Botrytis cinerea in tomato leaves. IPCBEE. 2013;60:64-68. DOI: 10.7763/IPCBEE.10.7763/IPCBEE
  4. [4] Chen H, Xiao X, Wang J, Wu L, Zheng Z, Yu Z. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol Lett. 2008;30:919-923. DOI: 10.1007/s10529-007-9626-9.10.1007/s10529-007-9626-918165869
  5. [5] Williamson B, Tudzynski B, Tudzynski P, Kan JAL. Botrytis cinerea: The cause of grey mould disease, Mol Plant Pathol. 2007;8:561-580. DOI: 10.1111/J.1364-3703.2007.00417.X.10.1111/j.1364-3703.2007.00417.x20507522
  6. [6] Zhang H, Wang L, Dong Y, Jiang S, Cao J, Meng R. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol Control. 2007;40:287-292. DOI: 10.1016/j.ijfoodmicro.2008.05.018.10.1016/j.ijfoodmicro.2008.05.01818579245
  7. [7] Essghaier B, Fardeau ML, Cayol JL, Hajlaoui MR, Boudabous A, Jijakli H, et al. Biological control of grey mould in strawberry fruits by halophilic bacteria. J Appl Microbiol. 2009;106:833-846. DOI: 10.1111/j.1365-2672.2008.04053.x.10.1111/j.1365-2672.2008.04053.x19191973
  8. [8] Kowalska J. Effects of Trichoderma asperellum [T1] on Botrytis cinerea [PERS.: FR.], growth and yield of organic strawberry. Acta Sci Pol Hortorum Cultus. 2011;10:107-114. http://hortorumcultus.actapol.net/pub/10_4_107.pdf.
  9. [9] Elad Y, Stewart A. Microbial control of Botrytis spp. Chapter 13. In: Elad Y, Williamson B, Tudzynski P, Delen N. editors. Botrytis: Biology, Pathology and Control. Dordrecht: Springer; 2007: 223-241. ISBN 9781402026263. DOI: 10.1007/978-1-4020-2626-3.10.1007/978-1-4020-2626-3
  10. [10] Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MC, Macías-Rodríguez LI, Cruz HR, et al. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control. 2015;81:83-92. DOI: 10.1016/j.biocontrol.2014.11.011.10.1016/j.biocontrol.2014.11.011
  11. [11] Jacometti MA, Wratten SD, Walter M. Review: Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine R. 2010:16:154-172. DOI: 10.1111/j.1755-0238.2009.0067.x.10.1111/j.1755-0238.2009.0067.x
  12. [12] Ren JJ, Shi GL, Wang XQ, Liu JG, Wang YN. Identification and characterization of a novel Bacillus subtilis strain with potent antifungal activity of a flagellin-like protein. World J Microb Biot. 2013;29:2343-2352. DOI: 10.1007/s11274-013-1401-6.10.1007/s11274-013-1401-6
  13. [13] Zongzheng Y, Xin L, Zhong L, Jinzhao P, Jin Q, Wenyan Y. Effect of Bacillus Subtilis SY1 on antifungal activity and plant growth. Int J Agric Biol Eng. 2009;2:55-61. DOI: 10.3965/j.issn.1934-6344.2009.04.055-061.10.3965/j.issn.1934-6344.2009.04.055-061
  14. [14] Alina SO, Constantiniscu F, Petruta CC. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotech Lett. 2015;20:10737-10750. http://www.rombio.eu/vol20nr5/01%20SICUIA%20OANA%20ALINA.pdf.
  15. [15] Behdani M, Pooyan M, Abbasi S. Evaluation of antifungal activity of some medicinal plants essential oils against Botrytis cinerea, causal agent of postharvest apple rot, in vitro. Intl J Agri Crop Sci. 2012;4:1012-1016. https://www.researchgate.net/publication/292586844_Evaluation_of_antifungal_activity_of_some_medicinal_plants_essential_oils_against_Botrytis_cinerea_causal_agent_of_postharvest_apple_rot_in_vitro.
  16. [16] Bouchra C, Mohamed A, Hassani Mina I, Hmamouchi M. Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol. Mediterr. 2003;42:251-256. http://www.fupress.net/index.php/pm/article/view/1711/1646.
  17. [17] Şesan TE, Enache E, Iacomi BM, Oprea M, Oancea F, Iacomi C. Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum L.). Acta Sci Pol Hortorum Cultus. 2015;14:29-43. http://www.acta.media.pl/pl/full/7/2015/000070201500014000010002900043.pdf.
  18. [18] Toure Y, Ongena M, Jacques P, Guiro A, Thonar P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol. 2004;96:1151-1160. DOI: 10.1111/j.1365-2672.2004.02252.x.10.1111/j.1365-2672.2004.02252.x
  19. [19] Nabrdalik M, Moliszewska E, Wierzba S. Importance of endophytic strains Pantoea agglomerans in the biological control of Rhizoctonia solani. Ecol Chem Eng S. 2018;25:331-342. DOI: 10.1515/eces-2018-0023.10.1515/eces-2018-0023
  20. [20] Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. Production and characterisation of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 2006;3:47-53. https://pdfs.semanticscholar.org/2ddf/2067a5aba34de9ded53aff23439854e0040d.pdf.
  21. [21] Janda K. Lipolityc activity and radial daily growth rate changes during incubation of Thermomyces lanugonosus on natural and synthetic fatty substrates. Rocz Panstw Zakl Hig. 2005;56:347-353. https://www.researchgate.net/publication/7168868_Lipolytic_activity_and_radial_daily_growth_rate_changes_during_incubation_of_thermomyces_lanuginosus_on_natural_and_synthetic_fatty_substrates.
  22. [22] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426-428. DOI: 10.1021/ac60147a030.10.1021/ac60147a030
  23. [23] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;19:265-275. http://www.jbc.org/content/193/1/265.full.pdf.10.1016/S0021-9258(19)52451-6
  24. [24] Todorova S, Kozhuharova L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microb Biot. 2010;26:1207-1216. DOI: 10.1007/s11274-009-0290-1.10.1007/s11274-009-0290-124026925
  25. [25] Hang NTT, Oh SO, Kim GH, Hur JS, Koh YJ. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J. 2005;21(1):59-63. https://pdfs.semanticscholar.org/6319/e3f619f0a5448add924ceb59d5f5a7d2dfcd.pdf.10.5423/PPJ.2005.21.1.059
  26. [26] Wang JL, Zong ZY, Shang W, Wei QiW, Wang HK. Activity against Botrytis cinerea of Bacillus amyloliquefaciens IMAUB1034 isolated from naturally fermented congee. J Food Agric Environ. 2012;10:534-542.
  27. [27] Wang S, Tongle HU, Yanling J IAO, Jianjian WEI, Keqiang CAO. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front Agric China. 2009;3(3):247-252. DOI: 10.1007/s11703-009-0042-x.10.1007/s11703-009-0042-x
  28. [28] Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biot. 2005;69:29-38. DOI: 10.1007/s00253-005-1940-3.10.1007/s00253-005-1940-315742166
  29. [29] Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 2007;9:1084-1090. DOI: 10.1111/j.1462-2920.2006.01202.x.10.1111/j.1462-2920.2006.01202.x
  30. [30] Ongena M, Henry G, Thonart P. The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. Chapter 5. In: Gisi U, Chet I, Gullino ML. editors. Recent Developments in Management of Plant Diseases, Plant Pathology in the 21st Century 1. Springer Science+Business Media B.V. 2010: 59-69. ISBN 9789400731417. DOI: 10.1007/978-1-4020-8804-9.10.1007/978-1-4020-8804-9
  31. [31] Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J. Biological activities of two fungistatics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994;60:2023-2030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC201597/pdf/aem00023-0329.pdf.10.1128/aem.60.6.2023-2030.1994
  32. [32] Lin TP, Chen CL, Chang LK, Tschen JS. M, Liu ST. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J Bacteriol. 1999;181:5060-5067. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC93996/pdf/jb005060.pdf.10.1128/JB.181.16.5060-5067.1999
  33. [33] Liu W, Mu W, Zhu B, Du Y, Liu F. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agr Sci China. 2008;7:1104-1114. DOI: 10.1016/S1671-2927(08)60153-4.10.1016/S1671-2927(08)60153-4
  34. [34] Mnif I, Ghribi D. Potential of bacterial derived biopesticides in pest management. Crop Prot. 2015;77:52-64. DOI: 10.1016/j.cropro.2015.07.017.10.1016/j.cropro.2015.07.017
  35. [35] Grata K, Nabrdalik M, Latała A. Evaluation of proteolytic activity of Bacillus mycoides strains. Proc ECOpole. 2010;4:253-256. http://tchie.uni.opole.pl/PECO10_2/PECO_2010_2_p1.pdf.
  36. [36] Nabrdalik M, Grata K, Latała A. Proteolytic activity of Bacillus cereus strains. Proc ECOpole. 2010;4;273-278. http://tchie.uni.opole.pl/PECO10_2/PECO_2010_2_p1.pdf.
  37. [37] Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, et al. Challenges and advances in the heterologous expression of cellulolytic enzymes: A review. Biotechnol Biofuels. 2014;7:135. DOI: 10.1186/s13068-014-0135-5.10.1186/s13068-014-0135-5421210025356086
  38. [38] Immanuel G, Dhanusha R, Prema P, Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol. 2006;3(1):25-34. DOI: 10.1007/BF03325904.10.1007/BF03325904
  39. [39] Kumar DP, Anupama PD, Singh RK, Thenmozhi R, Nagasathya A, Thajuddin N, et al. Evaluation of extracellular lytic enzymes from indigenous Bacillus isolates. J Microbiol Biotech Res. 2012;2(1):129-137. https://www.interesjournals.org/articles/evaluation-of-extracellular-lytic-enzymes-from-indigenous-bacillus-isolates.pdf.
  40. [40] Sethi S, Datta A, Gupta BL, Gupta S. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnology. 2013; Article ID 985685. DOI: 10.5402/2013/985685.10.5402/2013/985685439304125937986
  41. [41] Kim YK, Lee SC, Cho YY, Oh H J, Ko YH. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiology. 2012; Article ID 650563. DOI: 10.5402/2012/650563.10.5402/2012/650563365849823724328
  42. [42] Fatema K, Manchur MA. Isolation, identification and cellulase production by Bacillus brevis from the Acacia forest soil. IJRAF. 2015;2:14-22. http://www.ijraf.org/pdf/v2-i9/3.pdf.
  43. [43] Dias P, Ramos K, Padilha I, Araujo D, Santos SFM., Silva FLH. Optimization of cellulase production by Bacillus sp. isolated from sugarcane cultivated soil. Chem Eng Trans. 2014;38:277-282. DOI: 10.3303/CET1438047.10.3303/CET1438047
  44. [44] Abbey JA, Percival D, Abbey L, Asiedu SK, Prithiviraj B, Schilder A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) - prospects and challenges. Biocontrol Sci Technol. 2019;29(3):207-228. DOI: 10.1080/09583157.2018.1548574.10.1080/09583157.2018.1548574
  45. [45] Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food Chem Toxicol. 2008;46:446-475. DOI: 10.1016/j.fct.2007.09.106.10.1016/j.fct.2007.09.10617996351
  46. [46] Mohammadi P, Lotfi N, Naseri L, Etebarian HR.. Antifungal activities of essential oils from some Iranian medicinal plants against various postharvest moulds. J Med Plants Res. 2013;7(23):1699-1708. DOI: 10.5897/JMPR11.1518.10.5897/JMPR11.1518
  47. [47] Felšöciová S, Kačániová M, Horská E, Vukovic N, Hleba L, Petrová J, et al. Antifungal activity of essential oils against selected terverticillate penicillia. Ann Agr Env Med. 2015;22(1):38-42. DOI: 10.5604/12321966.1141367.10.5604/12321966.114136725780826
  48. [48] Lopez-Reyes JG, Spadaro D, Gullinoa ML, Garibaldia A. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivoi. Flavour Frag J. 2010;25:171-177. DOI: 10.1002/ffj.1989.10.1002/ffj.1989
  49. [49] Wójcik-Stopczyńska B, Jakowienko P, Wysocka G. The estimation of antifungal activity of essential oil and hydrosol obtained from wrinkled-leaf mint (Mentha crispa L.). Herba Pol. 2012;58:5-15. http://www.herbapolonica.pl/app/webroot/magazines-files/7494275-W%C3%B3jcik-Stopczy%C5%84ska%20et%20al.pdf.
  50. [50] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacor. 2014;4:1-10. DOI: 10.3389/fphar.2013.00177.10.3389/fphar.2013.00177388731724454289
  51. [51] Kamatou GPP, Vermaak I, Viljoen AM, Lawrence BM. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry. 2013;96:15-25. DOI: 10.1016/j.phytochem.2013.08.005.10.1016/j.phytochem.2013.08.00524054028
  52. [52] Kizil S, Hasimi N, Tolan V, Kilinc E. Mineral content, essential oil components and biological activity of two mentha species (M. piperita L., M. spicata L.). Turk J Field Crops. 2010;2:148-153. https://pdfs.semanticscholar.org/b101/26563e4d0f5e8f168750f165dfaa56c3926f.pdf.
  53. [53] Soković MD, Vukojević J, Marin PD, Brkić DD, Vajs V, Griensven LJL. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14:238-249. DOI: 10.3390/molecules14010238.10.3390/14010238
  54. [54] Edris AE, Farrag ES. Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Nahrung/Food. 2003;7:117-121. DOI: 10.1002/food.200390021.10.1002/food.20039002112744290
DOI: https://doi.org/10.1515/eces-2019-0044 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 597 - 607
Published on: Oct 11, 2019
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Katarzyna Grata, Agnieszka Rombel-Bryzek, Zbigniew Ziembik, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.