Have a personal or library account? Click to login
Pilot Tests and Fouling Identification in the Ultrafiltration of Model Oily and Saline Wastewaters Cover

Pilot Tests and Fouling Identification in the Ultrafiltration of Model Oily and Saline Wastewaters

Open Access
|Oct 2019

References

  1. [1] Abadi SRH, Sebzari MR, Hemati M, Rekabdar F, Mohammadi T. Ceramic membrane performance in microfiltration of oily wastewater. Desalination. 2011;265:222-228. DOI: 10.1016/j.desal.2010.07.055.10.1016/j.desal.2010.07.055
  2. [2] Ebrahimi M, Willershausen D, Ashaghi KS, Engel L, Placido L, Mund P, et al. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination. 2010;250(3):991-996. DOI: 10.1016/j.desal.2009.09.088.10.1016/j.desal.2009.09.088
  3. [3] Jamaly S, Giwa A, Hasan SW. Recent improvements in oily wastewater treatment: Progress, challenges, and future future oportunities. J Environ Sci. 2015;(37):15-30. DOI: 10.1016/j.jes.2015.04.011.10.1016/j.jes.2015.04.011
  4. [4] Ebenezer TI, Chen GZ. Produced water treatment technologies. Int J Low-Carbon Technol. 2014;9(3):157-177. DOI: 10.1093/ijlct/cts04910.1093/ijlct/cts049
  5. [5] Yu L, Han M, He F. A review of treating oily wastewater. Arab J Chem. 2017;10:1913-1922. DOI: 10.1016/j.arabjc.2013.07.020.10.1016/j.arabjc.2013.07.020
  6. [6] Weschenfelder SE, Fonseca MJC, Borges CP, Campos JC. Application of ceramic membranes for water management in offshore oil production platforms: Process design and economics. Sep Purif Technol. 2016;171:214:220. DOI: 10.1016/j.seppur.2016.07.040.10.1016/j.seppur.2016.07.040
  7. [7] Bodzek M. Inorganic micropollutants removal by means of membrane processes - state of the art. Ecol Chem Eng S. 2016;23(2):285-295. DOI: 10.2478/eces-2013-0044.10.2478/eces-2013-0044
  8. [8] Brunetti A, Macedonio F, Barbieri G, Drioli E. Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment. Environ Eng Res. 2015;20(4):307-328. DOI: 10.4491/eer.2015.074.10.4491/eer.2015.074
  9. [9] Lin B, Lin CY, Jong TC. Investigation of strategies to improve the recycling effectiveness of waste oil from fishing vessels. Marine Policy. 2007;31:415-420. DOI: 10.1016/j.marpol.2007.01.004.10.1016/j.marpol.2007.01.004
  10. [10] Tanudjaja HJ, Chejase ChA, Tarabara VV, Fane AG, Chew JW. Membrane-based separation of oily wastewater: A practical perspective. Water Res. 2019;156:347-365. DOI: 10.1016/j.watres.2019.03.021.10.1016/j.watres.2019.03.021
  11. [11] Abdelrasoul A, Doan H, Lohi A, Cheng CH. Mass Transfer Mechanisms and Transport Resistances in Membrane Separation Process. Chapter 2 In: Mass Transfer - Advancement in Process Modelling. London: IntechOpen; 2015: 15-40. DOI: 10.5772/60866.10.5772/60866
  12. [12] Dabestani S, Arcot J, Chen V. Protein recovery from potato processing water: Pre-treatment and membrane fouling minimization. J Food Eng. 2017;195:85-96. DOI: 10.1016/j.jfoodeng.2016.09.013.10.1016/j.jfoodeng.2016.09.013
  13. [13] Brião VB, Tavares CRG. Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration. Braz J Chem Eng. 2015;29(2):393-407. DOI: 10.1590/S0104-66322012000200019.10.1590/S0104-66322012000200019
  14. [14] Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170:530-551. DOI: 10.1016/j.jhazmat.2009.05.044.10.1016/j.jhazmat.2009.05.044
  15. [15] Padaki M, Surya Murali R, Abdullah MS, Misdan N, Moslehyani A, Kassim MA, et al. Membrane technology enhancement in oil-water separation. A review. Desalination. 2015;357:197-207. DOI: 10.1016/j.desal.2014.11.023.10.1016/j.desal.2014.11.023
  16. [16] Świerczyńska A, Bohdziewicz J, Puszczało E. Treatment of industrial wastewater in the sequential membrane bioreactor. Ecol Chem Eng. S. 2016;23(2):285-295. DOI: 10.1515/eces-2016-0020.10.1515/eces-2016-0020
  17. [17] Tomczak E, Blus M. Characteristics of polymeric ultrafiltration membranes produced with the use of graphene oxide. Ecol Chem Eng S. 2018;25(3):419-429. DOI: 10.1515/eces-2018-0029.10.1515/eces-2018-0029
  18. [18] Munirasu S, Abu Haija M, Banat F. Use of membrane technology for oil field and refinery produced water treatment - A review. Process Safety Environ Protect. 2016;100:173-202. DOI: 10.1016/j.psep.2016.01.010.10.1016/j.psep.2016.01.010
  19. [19] Ghidossi R, Veyret D, Scotto JL, Jalabert T, Moulin P. Ferry oily wastewater treatment. Sep Purif Technol. 2009;4:296-303. DOI: 10.1016/j.seppur.2008.10.013.10.1016/j.seppur.2008.10.013
  20. [20] Sun Ch, Leiknes T, Weitzenböck J, Thorstensen B. Development of an integrated shipboard wastewater treatment system using biofilm-MBR. Sep Purif Technol. 2010;75:22-31. DOI: 10.1016/j.seppur.2010.07.005.10.1016/j.seppur.2010.07.005
  21. [21] Hesampour M, Krzyzaniak A, Nyström M. The influence of different factors on the stability and ultrafiltration of emulsified oil in water. J Membr Sci. 2008;325(1):199-208. DOI: 10.1016/j.memsci.2008.07.048.10.1016/j.memsci.2008.07.048
  22. [22] Abbasi M, Mirfendereski M, Nikbakht M, Golshenas M, Mohammadi T. Performance study of mullite and mullite-alumina ceramic MF membranes for oily wastewaters treatment. Desalination. 2010;259(1-3):169-178. DOI: 10.1016/j.desal.2010.04.013.10.1016/j.desal.2010.04.013
  23. [23] Hua FL, Tsang YF, Wang YJ, Chan SY, Chua H, Sin SN. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem Eng J. 2007;128(2-3):169-175. DOI: 10.1016/j.cej.2006.10.017.10.1016/j.cej.2006.10.017
  24. [24] Zhang H, Zhong Z, Xing W. Application of ceramic membranes in the treatment of oilfield-produced water: Effects of polyacrylamide and inorganic salts. Desalination. 2013;309:84-90. DOI: 10.1016/j.desal.2012.09.012.10.1016/j.desal.2012.09.012
  25. [25] Matos M, Gutiérrez G, Lobo A, Coca J, Pazos C, Benito JM. Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J Membr Sci. 2016;520:749-759. DOI: 10.1016/j.memsci.2016.08.037.10.1016/j.memsci.2016.08.037
  26. [26] Pendashteh AR, Abdullah LCh, Fakhru’l-Razia A, Madaeni SS, Abidina ZZ, Radiah D, et al. Evaluation of membrane bioreactor for hypersaline oily wastewater treatment. Process Safety Environ Protect. 2012;90:45-50. DOI: 10.1016/j.psep.2011.07.006.10.1016/j.psep.2011.07.006
  27. [27] Tomczak E, Kamiński W, Ćwirko K. Two-level factorial experiments in the ultrafiltration of oil - water emulsions. Desalin Water Treat. 2018;128:119-124. DOI: 10.5004/dwt.2018.22625.10.5004/dwt.2018.22625
  28. [28] Freeman LJ, Ryan AG, Kensler JLK, Dickinson RM, Vining GG. A tutorial on the planning of experiments. Quality Eng. 2013;25:315-332. DOI: 10.1080/08982112.2013.817013.10.1080/08982112.2013.817013
  29. [29] Chang, I-S, Kim S-N. Wastewater treatment using membrane filtration - effect of biosolids concentration on cake resistance. Process Biochem. 2005;40:1307-1314. DOI: 10.1016/j.procbio.2004.06.019.10.1016/j.procbio.2004.06.019
  30. [30] Bowen R, Calvo JI, Hernández A. Steps of membrane blocking in flux decline during protein microfiltration. J Membr Sci. 1995;101:153-165. DOI: 10.1016/0376-7388(94)00295-A.10.1016/0376-7388(94)00295-
  31. [31] Iritani E, Katagiri N. Developments of blocking filtration model in membrane filtration. KONA. Powder Particle J. 2016;33:179-202. DOI: 10.14356/kona.2016024.10.14356/kona.2016024
  32. [32] Field RW, Wu D, Howell JA, Gupta BB. Critical flux concept for microfiltration fouling. J Membr Sci. 1995;100:259-272. DOI: 10.1016/0376-7388(94)00265-Z.10.1016/0376-7388(94)00265-Z
  33. [33] Hwang K, Lin T. Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration. J Membr Sci. 2002;199:41-52. DOI: 10.1016/S0376-7388(01)00675-5.10.1016/S0376-7388(01)00675-5
  34. [34] Chang I-S, Le Clech P, Jefferson B, Judd S. Membrane fouling in membrane bioreactors for wastewater treatment. J Environ Eng. 2002;128(1):1018-1029. DOI: 10.1061/(ASCE)0733-9372(2002)128:11(1018).10.1061/(ASCE)0733-9372(2002)128:11(1018)
DOI: https://doi.org/10.1515/eces-2019-0037 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 493 - 507
Published on: Oct 11, 2019
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Konrad Ćwirko, Elwira Tomczak, Daniela Szaniawska, Ryszard Buczkowski, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.