Have a personal or library account? Click to login
Perspectives of Hydrogen Production from Corn Wastes in Poland by Means of Dark Fermentation Cover

Perspectives of Hydrogen Production from Corn Wastes in Poland by Means of Dark Fermentation

Open Access
|Jul 2019

References

  1. [1] Urbaniec K, Grabarczyk R. Hydrogen production from sugar beet molasses - A techno-economic study. J Clean Prod. 2014;65:324-329. DOI: 10.1016/j.jclepro.2013.08.027.10.1016/j.jclepro.2013.08.027
  2. [2] Narasu ML, Urbaniec K. International conference on advances in biological hydrogen production and applications ICABHPA 2012. J Clean Prod. 2013;52:11-13. DOI: 10.1016/j.jclepro.2013.02.008.10.1016/j.jclepro.2013.02.008
  3. [3] Urbaniec K, Grabarczyk R. Kierunki badań nad wykorzystaniem biomasy do otrzymywania wodoru. (Directions of studies on the use of biomass for production of hydrogen) Przem Chem. 2005;11:836-838. https://repo.pw.edu.pl/docstore/download/WUT356ca3b92b8e4e6e8c63fe93fa0d10fe/AzCz_2.pdf.
  4. [4] Urbaniec K, Grabarczyk R. Raw materials for fermentative hydrogen production. J Clean Prod. 2009;17:959-962. DOI: 10.1016/j.jclepro.2009.02.008.10.1016/j.jclepro.2009.02.008
  5. [5] Panagiotopoulos JA, Bakker RR, De Vrije T, Urbaniec K, Koukios EG, Claassen PAM. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU. J Clean Prod. 2010;18:S9-S14. DOI: 10.1016/j.jclepro.2010.02.025.10.1016/j.jclepro.2010.02.025
  6. [6] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006;38:569-582. DOI: 10.1016/j.enzmictec.2005.09.015.10.1016/j.enzmictec.2005.09.015
  7. [7] Panagiotopoulos IA, Bakker RR, De Vrije T, Koukios EG, Claassen PAM. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy. 2010;35:7738-7747. DOI: 10.1016/j.ijhydene.2010.05.075.10.1016/j.ijhydene.2010.05.075
  8. [8] Panagiotopoulos I, Dakker R, Vrije T, Niel E Van, Koukios E, et al. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass. J Japan Inst Energy. 2011;90:363-368. DOI: 10.1046/j.1365-2559.2002.14891.x.10.1046/j.1365-2559.2002.14891.x12405952
  9. [9] Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP, Bakker RR, Claassen PAM, Koukios EG. Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod. 2014;102:521-528. DOI: 10.1016/j.jclepro.2015.04.055.10.1016/j.jclepro.2015.04.055
  10. [10] Hsu CW, Lin CY. Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications. Int J Hydrogen Energy. 2016;41:4489-4497. DOI: 10.1016/j.ijhydene.2015.07.080.10.1016/j.ijhydene.2015.07.080
  11. [11] Nasr N, Hafez H, El Naggar MH, Nakhla G. Application of artificial neural networks for modeling of biohydrogen production. Int J Hydrogen Energy. 2013;38:3189-3195. DOI: 10.1016/j.ijhydene.2012.12.109.10.1016/j.ijhydene.2012.12.109
  12. [12] Sierra R, Garcia LA, Holtzapple MT. Selectivity and delignification kinetics for oxidative short-term lime pretreatment of poplar wood, part I: Constant-pressure. Biotechnol Prog. 2011;27:976-985. DOI: 10.1002/btpr.590.10.1002/btpr.59021692196
  13. [13] Sangian HF, Sehe MR, Tamuntuan G, Zulnazri Z. Utilization of saline solutions in the modification of lignocellulose utilization of saline solutions in the modification of lignocellulose from Champaca wood. J Korean Wood Sci Technol. 2018;46:368-379. DOI: 10.5658/WOOD.2018.46.4.368.10.5658/.2018.46.4.368
  14. [14] Taufiq-Yap YH, Wong P, Marliza TS, Nurul Suziana NM, Tang LH, Sivasangar S. Hydrogen production from wood gasification promoted by waste eggshell catalyst. Int J Energy Res. 2013;37:1866-1871. DOI: 10.1002/er.3003.10.1002/er.3003
  15. [15] Perera KRJ, Arudchelvam Y, Gadhamshetty V, Nirmalakhandan N. Modeling and simulation of net energy gain by dark fermentation. Int J Hydrogen Energy. 2012;37:2267-2272. DOI: 10.1016/j.ijhydene.2011.10.059.10.1016/j.ijhydene.2011.10.059
  16. [16] Trad Z, Fontaine JP, Larroche C, Vial C. Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew Energy. 2016;98:264-282. DOI: 10.1016/j.renene.2016.03.094.10.1016/j.renene.2016.03.094
  17. [17] Singh V, Das D. Potential of Hydrogen-Production from Biomass. Science and Engineering of Hydrogen-Based Energy Technologies. Elsevier Inc.; 2018. DOI: 10.1016/b978-0-12-814251-6.00003-4.10.1016/B978-0-12-814251-6.00003-4
  18. [18] Chezeau B, Vial C. Modeling and Simulation of the Biohydrogen Production Processes. Elsevier B.V; 2019. DOI: 10.1016/b978-0-444-64203-5.00019-8.10.1016/B978-0-444-64203-5.00019-8
  19. [19] Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy. 2015;144:73-95. DOI: 10.1016/j.apenergy.2015.01.045.10.1016/j.apenergy.2015.01.045
  20. [20] Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol. 2009;100:2562-2568. DOI: 10.1016/j.biortech.2008.11.011.10.1016/j.biortech.2008.11.01119135361
  21. [21] Panagiotopoulos IA, Bakker RR, Budde MAW, de Vrije T, Claassen PAM, Koukios EG. Fermentative hydrogen production from pretreated biomass: A comparative study. Bioresour Technol. 2009;100:6331-6338. DOI: 10.1016/j.biortech.2009.07.011.10.1016/j.biortech.2009.07.01119656677
  22. [22] Tsapekos P, Kougias PG, Angelidaki I. Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Manage. 2018;78:903-910. DOI: 10.1016/j.wasman.2018.07.017.10.1016/j.wasman.2018.07.01732559985
  23. [23] Wu J, Ein-Mozaffari F, Upreti S. Effect of ozone pretreatment on hydrogen production from barley straw. Bioresour Technol. 2013;144:344-349. DOI: 10.1016/j.biortech.2013.07.001.10.1016/j.biortech.2013.07.00123891834
  24. [24] Li Q, Guo C, Liu CZ. Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Biomass Bioenergy. 2014;64:220-229. DOI: 10.1016/j.biombioe.2014.03.053.10.1016/j.biombioe.2014.03.053
  25. [25] Nasirian N, Almassi M. Optimization of biological hydrogen production process using stepwise regression method. Int J Biosci. 2014;6655:289-299. DOI: 10.12692/ijb/4.2.289-299.10.12692/ijb/4.2.289-299
  26. [26] Bartacek J, Zabranska J, Lens PNL. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod Biorefining. 2007;1:201-214. DOI: 10.1002/bbb.17.10.1002/bbb.17
  27. [27] Pradhan N, Dipasquale L, D’Ippolito G, Fontana A, Panico A, Lens PNL, et al. Kinetic modeling of fermentative hydrogen production by Thermotoga neapolitana. Int J Hydrogen Energy. 2016;41:4931-4940. DOI: 10.1016/j.ijhydene.2016.01.107.10.1016/j.ijhydene.2016.01.107
  28. [28] Agencja Rynku Rolnego. Rynek zbóż w Polsce (Corn Market in Poland). Warszawa: 2013. www.arr.gov.pl/data/00321/rynek_zboz_2013_pl.pdf.
  29. [29] Sołowski G. Theoretical potential of hydrogen production from textiles wastes in Pomeranian region by means of dark fermentation. In: Noch T, Mikołajczewska W, Wesołowska A, editors. Globalizacja a regionalna ochrona środowiska, Gdańsk: Wydawnictwo Gdańskiej Szkoły Wyższej; 2016. 313-317. https://mostwiedzy.pl/pl/publication/theoretical-potential-of-hydrogen-production-from-textiles-wastes-in-pomeranian-region-by-means-of-d,138189-1.
  30. [30] Sołowski G. Hydrogen production from wood waste by mean of dark fermentation. In: Pikoń K, Czarnowska L, editors. Contemporary Problems of Power Engineering and Environmental Protection 2016. Gliwice: Published by Department of Technologies and Installations for Waste Management; 2016. 189-194. http://cleanalternative.eu/wp-content/uploads/2018/01/Merged_OSWE_book.pdf.
  31. [31] Collins SR, Wellner N, Martinez Bordonado I, Harper AL, Miller CN, Bancroft I, et al. Variation in the chemical composition of wheat straw: the role of tissue ratio and composition. Biotechnol Biofuels. 2014;7:121. DOI: 10.1186/s13068-014-0121-y.10.1186/s13068-014-0121-y424377825426162
  32. [32] Kongjan P, Angelidaki I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour Technol. 2010;101:7789-7796. DOI: doi.org/10.1016/j.biortech.2010.05.024.10.1016/j.biortech.2010.05.02420554199
  33. [33] Cantero DA, Bermejo DM, Cocero JM. Reaction engineering for process intensification of supercritical water biomass refining. J Supercrit Fluids. 2015;96:21-35. DOI: 10.1016/j.supflu.2014.07.003.10.1016/j.supflu.2014.07.003
  34. [34] Pronyk C, Mazza G. Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresour Technol. 2012;106:117-124. DOI: 10.1016/j.biortech.2011.11.071.10.1016/j.biortech.2011.11.07122197077
  35. [35] Panagiotopoulos IA, Bakker RR, De Vrije T, Claassen PAM, Koukios EG. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy. 2012;37:11727-11734. DOI: 10.1016/j.ijhydene.2012.05.124.10.1016/j.ijhydene.2012.05.124
  36. [36] Karimi K, Taherzadeh MJ. A critical review on analysis in pretreatment of lignocelluloses: Degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol. 2016;203:348-356. DOI: 10.1016/j.biortech.2015.12.035.10.1016/j.biortech.2015.12.03526778166
  37. [37] Merali Z, Ho JD, Collins SRA, Gall G Le, Elliston A, Käsper A, et al. Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresour Technol. 2013;131:226-234. DOI: 10.1016/j.biortech.2012.12.023.10.1016/j.biortech.2012.12.02323347931
  38. [38] Sołowski G, Shalaby MS, Abdallah H, Shaban AM, Cenian A. Production of hydrogen from biomass and its separation using membrane technology. Renew Sustain Energy Rev. 2017;82:3152-3167. DOI: 10.1016/j.rser.2017.10.027.10.1016/j.rser.2017.10.027
  39. [39] Kozłowski K, Lewicki A, Malińska K, Wei Q. Current state, challenges and perspectives of biological production of hydrogen in dark fermentation process in Poland. J Ecol Eng. 2019;20:146-160. DOI: 10.12911/22998993/97270.10.12911/22998993/97270
  40. [40] Nagasawa K, Davidson FT, Lloyd AC, Webber ME. Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles. Appl Energy. 2019;235:1001-1016. DOI: 10.1016/j.apenergy.2018.10.067.10.1016/j.apenergy.2018.10.067
  41. [41] Blanco H, Nijs W, Ruf J, Faaij A. Potential for hydrogen and power-to-liquid in a low-carbon EU energy system using cost optimization. Appl Energy. 2018;232:617-639. DOI: 10.1016/j.apenergy.2018.09.216.10.1016/j.apenergy.2018.09.216
DOI: https://doi.org/10.1515/eces-2019-0031 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 255 - 263
Published on: Jul 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Gaweł Sołowski, Izabela Konkol, Adam Cenian, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.