Have a personal or library account? Click to login
New Approaches in Biological Wastewater Treatment Aimed at Removal of Organic Matter and Nutrients Cover

New Approaches in Biological Wastewater Treatment Aimed at Removal of Organic Matter and Nutrients

Open Access
|Jul 2019

References

  1. [1] Henze М, van Loosdrecht MCM, Ekama GA, Brdjanovic G. Biological Wastewater Treatment. London: IWA Publishing; 2008. ISBN: 9781843391883.
  2. [2] Sabliy L. Physico-chemical and Biological Treatment of Highly Concentrated Wastewater. Rivne: Monograph NUWMNRU. 2013;292. ISBN: 9789663272429.
  3. [3] Bieganowski A, Łagód G, Ryżak M, Montusiewicz A, Chomczyńska M, Sochan A. Measurement of activated sludge particle diameters using laser diffraction method. Ecol Chem Eng S. 2012;19(4):597-608. DOI: 10.2478/v10216-011-0042-7.10.2478/v10216-011-0042-7
  4. [4] Russell DL. Practical Wastewater Treatment. Second Edition. New Jersey, Hoboken: John Wiley Sons Inc.; 2019. ISBN: 9781119527121 1119527120.
  5. [5] Jaromin-Gleń K, Babko R, Łagód G, Sobczuk H. Community composition and abundance of protozoa under different concentration of nitrogen compounds at “Hajdow” wastewater treatment plant. Ecol Chem Eng S. 2013;20(1):127-139. DOI: 10.2478/eces-2013-0010.10.2478/eces-2013-0010
  6. [6] Ozturk A, Aygun A, Nas B. Application of sequencing batch biofilm reactor (SBBR) in dairy wastewater treatment. Korean J Chem Eng. 2019;36(2):248-254. DOI: 10.1007/s11814-018-0198-2.10.1007/s11814-018-0198-2
  7. [7] Erkan HS, Gunalp G, Engin GO. Application of submerged membrane bioreactor technology for the treatment of high strength dairy wastewater. Braz J Chem Eng. 2018;35(1):91-100. DOI: 10.1590/0104-6632.20180351s20160599.10.1590/0104-6632.20180351s20160599
  8. [8] Drewnowski J, Makinia J, Kopec L, Fernandez-Morales FJ. Modelization of nutrient removal processes at a large WWTP using a modified ASM2d Model. Int J Environ Res Public Health. 2018;15(12):2817. DOI: 10.3390/ijerph15122817.10.3390/ijerph15122817631330930544899
  9. [9] Lobos-Moysa E, Dudziak M, Zon Z. Biodegradation of rapeseed oil by activated sludge method in the hybrid system. Desalination. 2009;241(1):43-48. DOI: 10.1016/j.desal.2008.02.029.10.1016/j.desal.2008.02.029
  10. [10] Waclawek S, Grubel K, Chlad Z, Dudziak M, Cernik M. Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge. Chem Pap. 2015;69(11):1473-1480. DOI: 10.1515/chempap-2015-0169.10.1515/chempap-2015-0169
  11. [11] Babko R, Kuzmina T, Jaromin-Gleń K, Bieganowski A. Bioindication assessment of activated sludge adaptation in a lab-scale experiment. Ecol Chem Eng S. 2014;21(4):605-616. DOI: 10.1515/eces-2014-0043.10.1515/eces-2014-0043
  12. [12] Sumathi M, Vasudevan N. Removal of phosphate by Staphylococcus aureus under aerobic and alternating anaerobic-aerobic conditions. Environ Technol. 2018;39(8):1071-1080. DOI: 10.1080/09593330.2017.1320432.10.1080/09593330.2017.132043228478737
  13. [13] Nasab ARM, Soleymani SM, Nosrati M, Mousavi SM. Performance evaluation of a modified step-feed anaerobic/anoxic/oxic process for organic and nutrient removal. Chin J Chem Eng. 2016;24(3):394-403. DOI: 10.1016/j.cjche.2015.10.010.10.1016/j.cjche.2015.10.010
  14. [14] Kudlek E, Dudziak M. The assessment of changes in the membrane surface during the filtration of wastewater treatment plant effluent. Desalin Water Treat. 2018;128:298-305. DOI: 10.5004/dwt.2018.22875.10.5004/dwt.2018.22875
  15. [15] Babko R, Jaromin-Gleń K, Łagód G, Pawłowska M, Pawłowski A. Effect of drilling mud addition on activated sludge and processes in sequencing batch reactors. Desalin Water Treat. 2016;57(3):1490-1498. DOI:10.1080/19443994.2015.1033137.10.1080/19443994.2015.1033137
  16. [16] Vaiopolou E. A modified UCT method for biological nutrient removal: Configuration and performance. Chemosphere. 2008;72(7):1062-1068. DOI:10.1016/j.chemosphere. 2008.04.044.10.1016/j.chemosphere.2008.04.04418519149
  17. [17] Liu JQ, Deng SY, Qiu B, Shang Y, Tian JB, Bashir A, Cheng X. Comparison of pretreatment methods for phosphorus release from waste activated sludge. Chem Eng J. 2019;368(15):754-763. DOI: 10.1016/j.cej.2019.02.205.10.1016/j.cej.2019.02.205
  18. [18] Cao JS, Oleyiblo OJ, Xue ZX, Otache YM, Feng Q. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source. Chin J Oceanol Limn. 2015;33(4):1039-1052. DOI: 10.1007/s00343-015-4201-z.10.1007/s00343-015-4201-z
  19. [19] Barnard JL, Dunlap P, Steichen M. Rethinking the mechanisms of biological phosphorus removal. Water Environ Res. 2017;89(11):2043-2054. DOI: 10.2175/106143017X15051465919010.10.2175/106143017X1505146591901029080569
  20. [20] Fang C, Zhang T, Czechowska-Kosacka A, Pawłowski A, Łagód G, Jiang R, Wang Q. Estimation of phosphorus recovery by struvite crystallization from animal manure wastewater in China. Environ Protect Eng. 2015;41(4):195-207. DOI:10.5277/epe150415.10.5277/epe150415
  21. [21] Jimenez J, Melcer H, Parker D, Bratby J. The effect of degree of recycle on the nitrifier growth rate. Water Environ Res. 2011;83(1):26-35. DOI: 10.2175/106143010X12609736967008.10.2175/106143010X12609736967008
  22. [22] Guz Ł, Łagód G, Jaromin-Gleń K, Suchorab Z, Sobczuk H, Bieganowski A. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors. 2015;15(1):1-21. DOI: 10.3390/s150100001.10.3390/s150100001432700425545263
  23. [23] Balbierz P, Knap M. Comparison of methods for solids retention time determination and control. E3S Web Conf. 2017:22:00008. DOI: 10.1051/e3sconf/20172200008.10.1051/e3sconf/20172200008
  24. [24] Drewnowski J, Mąkinia J, Szaja A, Łagód G, Kopeć Ł, Aguilar JA. Comparative study of balancing SRT by using modified ASM2d in control and operation strategy at full-scale WWTP. Water. 2019;11(3):485. DOI: 10.3390/w11030485.10.3390/w11030485
  25. [25] Łagód G, Chomczyńska M, Montusiewicz A, Malicki J, Bieganowski A. Proposal of measurement and visualization methods for dominance structures in the saprobe communities. Ecol Chem Eng S. 2009;16(3):369-377. https://drive.google.com/file/d/16kMQeMGRupbWPc4yhlKh48Uy2wH3g2vG/view.
  26. [26] Gvozdyak P. Based on the principle of bioconveyer (Biotechnology of environment safety). Visnyk of National Academy of Sciences of Ukraine. 2003;3:29-36. http://dspace.nbuv.gov.ua/handle/123456789/70340.
  27. [27] Sabliy L, Kuzminskiy Y, Gvozdyak P, Lagod G. Anaerobic and aerobic treatment of wastewater of milk plants. Proc ECOpole. 2009;3(2):373-378. https://drive.google.com/drive/folders/1Jzk3ecjTebTelBcpxKqsVrO6fKq_tOmt.
  28. [28] Sabliy L, Konontsev S. Wastewater treatment biotechnology for the plants of milk industry. Visnyk of UDUVGP. 2003;2(21):142-150.
  29. [29] Del Rozo R, Diez V. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment. Water Res. 2005;39(6):1114-1122. DOI: 10.1016/j.watres.2005.01.013.10.1016/j.watres.2005.01.013
  30. [30] Fyda J, Babko R, Fialkowska E, Pajdak-Stos A, Kocerba-Soroka W, Sobczyk M, et al. Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs). Eur J Protistol. 2015;51(5):470-479. DOI: 10.1016/j.ejop.2015.09.001.10.1016/j.ejop.2015.09.001
  31. [31] Foissner W. Protists as bioindicators in activated sludge: Identification, ecology and future needs. Eur J Protistol. 2016;55(Pt A):75-94. DOI: 10.1016/j.ejop.2016.02.004.10.1016/j.ejop.2016.02.004
  32. [32] Gvozdyak PI, Sapura OV. Simple method of detection and intensivity estimation of anaerobic processes accompanied by gas release. Microbiol Biotechnol. 2009;4(8):53-57. DOI: 10.18524/2307-4663.2009.4(8).103580.10.18524/2307-4663.2009.4(8).103580
  33. [33] Zhukova V, Sabliy L, Łagód G. Biotechnology of the food industry wastewater treatment from nitrogen compounds. Proc ECOpole. 2011;5(1):133-138. https://drive.google.com/drive/folders/1tpAJ9F051yIW0vm3j0S6hbzez4q31QeD.
  34. [34] Bernat K, Kulikowska D, Drzewicki A. Microfauna community during pulp and paper wastewater treatment in a UNOX system. Eur J Protistol. 2017;58:143-151. DOI: 10.1016/j.ejop.2017.02.004.10.1016/j.ejop.2017.02.00428314218
  35. [35] Parada-Albarracin JA, Perez J, Gomez MA. Bioindicator value of flagellates in urban wastewater treatment using membrane bioreactors. Water Res. 2017;122:526-535. DOI: 10.1016/j.watres.2017.06.033.10.1016/j.watres.2017.06.03328628875
  36. [36] Pawęska K, Bawiec A, Pulikowski K. Wastewater treatment in submerged aerated biofilter under condition of high ammonium concentration. Ecol Chem Eng S. 2017;24(3):431-442. DOI: 10.1515/eces-2017-0029.10.1515/eces-2017-0029
  37. [37] Amaral AL, Leal CS, Vaz AI, Vieira JC, Quinteiro AC, Costa ML, Castro LM. Use of chemometric analyses to assess biological wastewater treatment plants by protozoa and metazoa monitoring. Environ Monit Assess. 2018;190(9):497. DOI: 10.1007/s10661-018-6882-1.10.1007/s10661-018-6882-130073627
  38. [38] Machnicka A, Grubel K. Efficiency of biological phosphorus removal by filamentous bacteria. Chem Didact Ecol Metrol. 2016;21(1-2):117-123. DOI: 10.1515/cdem-2016-0010.10.1515/cdem-2016-0010
  39. [39] Bortoluzzi AC, Faitao JA, Di Luccio M, Dallago RM, Steffens J, Zabot GL, et al. Dairy wastewater treatment using integrated membrane systems. J Environ Chem. Eng. 2017;5(5):4819-4827. DOI: 10.1016/j.jece.2017.09.018.10.1016/j.jece.2017.09.018
  40. [40] Sustersic V, Nesovic A, Gordic D, Donovic K, Terzic I. An overview of wastewater treatment from the milk and dairy industry-case study of Central Serbia. Desalin Water Treat. 2018;133:10-19. DOI: 10.5004/dwt.2018.23006.10.5004/dwt.2018.23006
  41. [41] Ministerstvo Rehionalʹnoho Rozvytku, Budivnytstva ta Zhytlovo-Komunalʹnoho Hospodarstva Ukrayiny (Ministry of Regional Development, Construction and Housing and Communal Services of Ukraine). Nakaz (Order) 01.12.2017 No. 316/15.01.2018 No. 56/31508. On Approval of the Rules for the Acceptance of Wastewater to Centralized Wastewater Systems and the Procedure for Determining the Amount of the Fee Charged for Excessive Discharges of Sewage to Centralized Drainage Systems. https://zakon.rada.gov.ua/laws/show/z0056-18/ed20171201?lang=en.
DOI: https://doi.org/10.1515/eces-2019-0023 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 331 - 343
Published on: Jul 18, 2019
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Larisa Sabliy, Yevgeniy Kuzminskiy, Veronika Zhukova, Marina Kozar, Henryk Sobczuk, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.