Have a personal or library account? Click to login
Diffusive Properties of Alginate Biosorbents Cover
Open Access
|Apr 2019

References

  1. [1] Biegańska M, Cierpiszewski R. Utilization of agricultural and industrial wastes for metal removal from aqueous solutions. Polish J Chem Technol. 2011;13,1:20-22. DOI: 10.2478/V10026-011-0004.10.2478/V10026-011-0004
  2. [2] Argun ME, Dursun S, Ozdemir C, Karatas M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater. 2007;141:77-85. DOI: 10.1016/J.Jhazmat.2006.06.095.10.1016/j.jhazmat.2006.06.09516879919
  3. [3] Rozada F, Otero M, Morán A, García AI. Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour Technol. 2008;99:6332-6338. DOI: 10.1016/j.biortech.2007.12.015.10.1016/j.biortech.2007.12.01518234495
  4. [4] Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J Hazard Mater. 2008;150:619-625. DOI: 10.1016/j.jhazmat.2007.05.011.10.1016/j.jhazmat.2007.05.01117574736
  5. [5] Chand R, Narimura K, Kawakita H, Ohto K, Watari T, Inoue K. Grape waste as a biosorbents for removing Cr(VI) from aqueous solution. J Hazard Mater. 2009;163:245-250. DOI: 10.1016/j.jhazmat.2008.06.084.10.1016/j.jhazmat.2008.06.08418684562
  6. [6] Dhakal RP, Ghimire KN, Inoue K. Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy. 2005;79:182-190. DOI: 10.1016/j.hydromet.2005.06.007.10.1016/j.hydromet.2005.06.007
  7. [7] Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T. Adsorptive separation of arsenate and aresnite anions from aqueous medium by using orange waste. Water Res. 2003;37:4945-4953. DOI: 10.1016/j.watres.2003.08.029.10.1016/j.watres.2003.08.02914604641
  8. [8] Rincon J, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Biosorption of heavy metals by chemically activated alga Fucus Vesiculosus. J Chem Technol Biotechnol. 2005;80:1403-1407. DOI: 10.1002/jctb.1342.10.1002/jctb.1342
  9. [9] Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Le Deit H, Kanellopoulos NK. Heavy metal sorption by calcium alginate beads from Laminaria Digitata. J Hazard Mater. 2006;B137:1765-1772. DOI: 10.1016/j.jhazmat.2006.05.017.10.1016/j.jhazmat.2006.05.01716797834
  10. [10] Papageorgiou SK, Kouvelos EP, Katsaros FK. Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions. Desalination. 2008;224:293-306. DOI: 10.1016/j.desal.2007.06.011.10.1016/j.desal.2007.06.011
  11. [11] Lai Y-L, Annadurai G, Huang F-H, Lee J-F. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresour Technol. 2008; 99(14):6480-6487. DOI: 10.1016/j.biortech.2007.11.041.10.1016/j.biortech.2007.11.04118248987
  12. [12] Grimm A, Zanzi R, Björnbom E, Cukierman AL. Comparison of different types of biomasses for copper biosorption. Bioresour Technol. 2008;99:2559-2565. DOI: 10.1016/j.biortech.2007.04.036.10.1016/j.biortech.2007.04.03617570656
  13. [13] Chojnacka K. Biosorption and bioaccumulation - The prospects for practical applications. Environ Int. 2010;36:299-307. DOI: 10.1016/j.envint.2009.12.001.10.1016/j.envint.2009.12.00120051290
  14. [14] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.10.1016/j.bioelechem.2011.12.00722245248
  15. [15] Huang D, Wang W, Wang A. Removal of Cu2+ and Zn2+ ions from aqueous solution using sodium alginate Adsorption Sci Technol. 2013;31(7):611-624. DOI: and attapulgite composite hydrogels. 10.1260/0263-6174.31.7.611.10.1260/0263-6174.31.7.611
  16. [16] Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res. 2015;22:15386-15415. DOI: 10.1007/s11356-015-5278-9.10.1007/s11356-015-5278-926315592
  17. [17] Jain CK, Malik DS, Yadav AK. Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process. 2016;3:495-523. DOI: 10.1007/s40710-016-0143-5.10.1007/s40710-016-0143-5
  18. [18] Khan TA, Mukhlif AA, Khan EA, Sharma DK. Isotherm and kinetics modeling of Pb(II) and Cd(II) adsorptive uptake from aqueous solution by chemically modified green algal biomass. Model Earth Syst Environ. 2016;2:117. DOI: 10.1007/s40808-016-0157-z.10.1007/s40808-016-0157-z
  19. [19] Yıldız S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007
  20. [20] Cheng J, Yin W, Chang Z, Lundholm N, Jiang Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J Appl Phycol. 2017;29:211-221. DOI: 10.1007/s10811-016-0916-2.10.1007/s10811-016-0916-2
  21. [21] Kłos A. Determination of sorption properties of heavy metals in various biosorbents. Ecol Chem Eng S. 2018;25(2):201-216. DOI: 10.1515/eces-2018-0013.10.1515/eces-2018-0013
  22. [22] Chen D, Lewandowski Z, Roe F, Surapaneni P. Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnol Bioeng. 1993;41:755-760. DOI: 10.1002/bit.260430212.10.1002/bit.260430212
  23. [23] Lewandowski Z, Roe F. Communication to the editor. Diffusivity of Cu2+ in calcium alginate gel beads: recalculation. Biotechnol Bioeng. 1994;43:186-187. DOI: 10.1002/bit.260430213.10.1002/bit.260430213
  24. [24] Konishi Y, Shimaoka J, Asai S. Sorption of rare-earth ions on biopolymer gel beads of alginic acid. Reactive Functional Polymers. 1998;36:197-206.10.1016/S1381-5148(97)00103-X
  25. [25] Ibanez JP, Umetsu Y. Uptake of copper from extremely dilute solutions by alginate sorbent material: an alternative for enviromental control. Proc Copper 99-Cobre 99 Int Environ Conf. 1999; 387-397. www.jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902146055619979&rel=0.
  26. [26] Veglio F, Esposito A, Reverberi AP. Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy. 2002;65:43-57. DOI: 10.1016/S0304-386X(02)00064-6.10.1016/S0304-386X(02)00064-6
  27. [27] Kwiatkowska-Marks S, Wójcik M, Kopiński L. Biosorption of heavy metals on alginate beads. Przem Chem. 2011;90(10):1924-1930. www.bwmeta1.element.baztech-d10e4e16-2e7d-4d6d-a346-a7b1ca859142.
  28. [28] Arica MY, Bayramoglu G, Yilmaz M, Bektas S, Genc O. Biosorption of Hg2+, Cd2+, and Zn2+ by ca-alginate and immobilized wood-rotting fungus Funalia Trogii. J Hazard Mater. 2004;B109:191-199. DOI: 10.1016/j.jhazmat.2004.03.017.10.1016/j.jhazmat.2004.03.017
  29. [29] Apel ML, Torma AE. Determination of kinetics and diffusion coefficients of metal sorption on Ca-alginate beads. Canad J Chem Eng. 1993;71:652-656. DOI: 10.1002/cjce.5450710419.10.1002/cjce.5450710419
  30. [30] Araujo MM, Teixeira JA. Trivalent chromium sorption on alginate beads. Int Biodeterioration Biodegrad. 1997;40:63-74. DOI: 10.1016/s0964-8305(97)00064-4.10.1016/s0964-8305(97)00064-4
  31. [31] Kwiatkowska-Marks S, Kopiński L, Wójcik M. Conductometric determination of the effective copper ion diffusion coefficient in alginate beads. Inż Aparat Chemiczna. 2011;50,6:9-11. http://inzynieria-aparaturachemiczna.pl/rok-2011-nr-6/.
  32. [32] Klimiuk E, Kuczajowska-Zadrożna M. The effect of poly(vinyl alcohol) on cadmium adsorption and desorption from alginate adsorbents. Polish J Environ Stud. 2002;11,4:375-384. www.agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-e21e2198-9aae-412a-be4e-1804db34c293?q=bwmeta1.element.agro-number-ddd87f36-30f6-4d53-aaca-2372e24ee9ee.
  33. [33] Wang S, Vincent T, Faur C, Guibal E. Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). Int J Mol Sci. 2016;17:1453. DOI: 10.3390/ijms17091453.2759812810.3390/ijms17091453
  34. [34] Arnaud J-P, Lacroix C, Castaigne F. Counterdiffusion of lactose and lactic acid in κ-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microbial Technol. 1992;14:715-724. DOI: 10.1016/0141-0229(92)90111-Z.10.1016/0141-0229(92)90111-Z
  35. [35] Volesky B. Biosorption process simulation tools. Hydrometallurgy. 2003;71:179-190. DOI: 10.1016/S0304-386X(03)00155-5.10.1016/S0304-386X(03)00155-5
DOI: https://doi.org/10.1515/eces-2019-0011 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 149 - 163
Published on: Apr 15, 2019
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Sylwia Kwiatkowska-Marks, Justyna Miłek, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.