Have a personal or library account? Click to login
Geostatistical Methods in Water Distribution Network Design - A Case Study Cover

Geostatistical Methods in Water Distribution Network Design - A Case Study

Open Access
|Apr 2019

References

  1. [l] United Nations Population Fund. State of the World Population 2007: Unleashing the Potential of Urbangrowth. New York: United Nations Population Fund; 2007.
  2. [2] House-Peters LA, Chang H. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resour Res. 2011;47:1-15. DOI: 10.1029/2010WR009624.10.1029/2010WR009624
  3. [3] Anisha G, Kumar A, Ashok Kumar J, Suvarna Raju P. Analysis and design of water distribution network using EPANET for Chirala Municipality in Prakasam District of Andhra Pradesh. Int J Eng Appl Sci. 2016;3(4):53-60. https://www.ijeas.org/download_data/IJEAS0304026.pdf.
  4. [4] Boulos FP, Jacobsen BL, Heath EJ, Kamojjala S. Real-time modeling of water distribution systems: A case study. J Am Water Works Assoc. 2014;106(9):391-401.DOI: 10.5942/jawwa.2014.106.0076.10.5942/jawwa.2014.106.0076
  5. [5] BañosR, Gil C, Reca J, Montoya GF. A memetic algorithm applied to the design of water distribution networks. Appl Soft Comput. 2010;10(1):261-266. DOI: 10.1016/j.asoc.2009.07.010.10.1016/j.asoc.2009.07.010
  6. [6] Lee SJ, Wentz EA. Applying Bayesian Maximum Entropy to extrapolating local-scale water consumption in Maricopa County, Arizona. Water Resour Res. 2008;44, W01401. DOI: 10.1029/2007WR006101.10.1029/2007WR006101
  7. [7] Sunela MI, Puust R. Real time water supply system hydraulic and quality modeling - a case study. Procedia Eng. 2015;119:744-752. DOI: 10.1016/j.proeng.2015.08.928.10.1016/j.proeng.2015.08.928
  8. [8] Shandas V, Parandvash GH. Integrating urban form and demographics in water-demand management: An empirical case study of Portland, Oregon. Environ Planning B Plannning Des. 2010;37:112-128. DOI: 10.1068/b35036.10.1068/b35036
  9. [9] Franczyk J, Chang H. Spatial analysis of water use in Oregon, USA, 1985-2005. Water Resour Manage. 2009;23:755-774. DOI: 10.1007/s11269-008-9298-9.10.1007/s11269-008-9298-9
  10. [10] Wackernagel H. Principal Component Analysis for Autocorrelated Data: A Geostatistical Perspective. Technical Report N-22/98/G, Centre de Geostatistique-Ecole de Mines de Paris, 1998. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7550&rep=rep1&type=pdf.
  11. [11] Savelieva E. Using ordinary kriging to model radioactive contamination data. Appl GIS. 2005;1(2):10-01-10-10. DOI: 10.2104/ag050010.10.2104/ag050010
  12. [12] Bancheri M, Serafin F, Bottazzi M, Abera W, Formetta G, Rigon R. The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8. Geosci Model Dev. 2018;11:2189-2207. DOI: 10.5194/gmd-11-2189-2018.10.5194/gmd-11-2189-2018
  13. [13] Qiao P, Lei M, Yang S, Yang J, Guo G, Zhou X. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Environ Sci Pollut Res Int. 2018;25(16):15597-15608. DOI: 10.1007/s11356-018-1552-y.10.1007/s11356-018-1552-y29572743
  14. [14] Goovaerts P. Geostatistics for Natural Resources Evaluation. New York: Oxford University Press; 1997. ISBN: 0195115384.10.1093/oso/9780195115383.001.0001
  15. [15] Isaaks EH, Srivastava RM. An Introduction to Applied Geostatistics. New York: Oxford University Press;1989. ISBN: 9780195050134.
  16. [16] Farmer WH. Ordinary kriging as a tool to estimate historical daily streamflow records. Hydrol Earth Syst Sci. 2016;20:2721-2735. DOI: 10.5194/hess-20-2721-2016.10.5194/hess-20-2721-2016
  17. [17] Zhang J, Li X, Yang R, Liu Q, Zhao L, Dou B. An extended kriging method to interpolate near-surface soil moisture data measured by wireless sensor networks. Sensors 2017;17(6):1390. DOI: 10.3390/s17061390.10.3390/s1706139028617351
  18. [18] Szeląg B, Gawdzik A, Gawdzik A. Application of selected methods of black box for modelling the settleability process in wastewater treatment plant. Ecol Chem Eng S. 2017;24(1):119-127. DOI: 10.1515/eces-2017-0009.10.1515/eces-2017-0009
  19. [19] Miller T, Poleszczuk G. Prediction of the seasonal changes of the chloride concentrations in urban water reservoir. Ecol Chem Eng S. 2017;24(4):595-611. DOI: 10.1515/eces-2017-0039.10.1515/eces-2017-0039
  20. [20] Chai T, Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geosci Model Dev. 2014;7:1247-1250. DOI: 10.5194/gmd-7-1247-2014.10.5194/gmd-7-1247-2014
  21. [21] Zeng W, Lei G, Zhang H, Hong M, Xu C, Wu J, et al. Estimating root zone moisture from surface soil using limited data. Ecol Chem Eng S. 2017;24(4):501-516. DOI: 10.1515/eces-2017-0033.10.1515/eces-2017-0033
  22. [22] Hengl T, Nussbaum M, Wright MN, Heuvelink GBM, Gräler B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. Peer J. 2018;6:e5518. DOI: 10.7717/peerj.5518.10.7717/peerj.5518
  23. [23] Corbella HM, Sauri Pujol D. What lies behind domestic water use? A review essay on the drivers of domestic water consumption. Bol Asoc Geogr Esp. 2009;50:297-314. http://age.ieg.csic.es/boletin/50/13%20MARCH.pdf.
  24. [24] Irwin EG, Jayaprakash C, Munroe DK. Towards a comprehensive framework for modeling urban spatial dynamics. Landscape Ecol. 2009;24:1223-1236. DOI: 10.1007/s10980-009-9353-9.10.1007/s10980-009-9353-9
  25. [25] Zhou SL, McMahon TA, Walton A, Lewis J. Forecasting daily urban water demand: a case study of Melbourne. J Hydrol. 2000;236:153-164. DOI: 10.1016/S0022-1694(00)00287-0.10.1016/S0022-1694(00)00287-0
  26. [26] Rasooli A, Kang D. Designing of hydraulically balanced water distribution network based on GIS and EPANET. Int J Adv Computer Sci Appl. 2016;7(2):118-125. DOI: 10.14569/IJACSA.2016.070216.10.14569/IJACSA.2016.070216
  27. [27] Jenkins MW, Lund JR. Integrating yield and shortage management under multiple uncertainties. J Water Resources Plan Manage. 2000;126(5):288-297. DOI: 10.1061/(ASCE)0733-9496(2000)126:5(288).10.1061/(ASCE)0733-9496(2000)126:5(288)
  28. [28] Narany ST, Ramli MF, Aris AZ, Sulaiman WNA, Fakharian K. Spatial assessment of groundwater quality monitoring wells using indicator kriging and risk mapping, Amol-Babol Plain, Iran. Water. 2014;6:68-85. DOI: 10.3390/w6010068.10.3390/w6010068
  29. [29] Davis J. Statistics and Data Analysis in Geology. New York: John Wiley Sons Inc; 2002. ISBN: 0471080799.
  30. [30] Namysłowska-Wilczyńska B, Wilczyński A. Application of geostatistical methods to spatial analysis of electrical load variation over area of Poland. Annals Geomatics, 2005;3(2):125-138. http://rg.ptip.org.pl/index.php/rg/article/viewFile/RG2005-2-Namyslowska-WilczynskaWilczynski/892.
  31. [31] Wackernagel H. Multivariate Geostatistics. An Introduction with Applications. Third, completely revised edition. Berlin: Springer-Verlag; 2003. DOI: 10.1007/978-3-662-05294-5.10.1007/978-3-662-05294-5
  32. [32] Zarychta R, Zarychta A. Application of ordinary kriging to reconstruct and visualise the relief in the location of an open pit sand mine. Cartography and Remote Sensing, Special issue: Measurement Technologies in Surveying. 2013;133-146. ISBN: 9788361576267.
  33. [33] Klauberg C, Hudak AT, Bright BC, Boschetti L, Dickinson MB, Kremens RL, et al. Use of ordinary kriging and Gaussian conditional simulation to interpolate airborne fire radiative energy density estimates. Int J Wildland Fire. 2018;27(4):228-240. DOI: 10.1071/WF17113.10.1071/WF17113
DOI: https://doi.org/10.1515/eces-2019-0008 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 101 - 118
Published on: Apr 15, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Maciej Potyralla, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.