Have a personal or library account? Click to login
Sorption of Hydrogen Chloridein The Fluidized Bed Reactor Cover

Sorption of Hydrogen Chloridein The Fluidized Bed Reactor

Open Access
|Apr 2019

References

  1. [1] Vassilev SV, Eskenazyb GM, Vassilevaa CG. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel. 2000;79:903-921. DOI: 10.1016/S0016-2361(99)00236-7.10.1016/S0016-2361(99)00236-7
  2. [2] Yudovich YE, Ketris MP, Chlorine in coal: A review. Int J Coal Geol. 2006;67:127-144. DOI: 10.1016/j.coal.2005.09.004.10.1016/j.coal.2005.09.004
  3. [3] Spears DA, Zheng Y. Geochemistry and origin of elements in some UK coals. Int J Coal Geol. 1999;38(3-4):161-179. DOI: 10.1016/S0166-5162(98)00012-3.10.1016/S0166-5162(98)00012-3
  4. [4] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89:913-933. DOI: 10.1016/j.fuel.2009.10.022.10.1016/j.fuel.2009.10.022
  5. [5] Tillman, DA, Duong D, Miller B. Chlorine in solid fuels fired in pulverized fuel boilers-sources, forms, reactions, and consequences: A literature review. Energy Fuels. 2009;23(7):3379-3391. DOI: 10.1021/ef801024s.10.1021/ef801024s
  6. [6] Lu P, Huang Q, Bourtsalas AC, Themelis NJ, Chi Y, Yan J. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci. 2019;78:13-28. DOI: 10.1016/j.jes.2018.09.003.10.1016/j.jes.2018.09.003
  7. [7] Toxicological profile for DDT, DDE, and DDD. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; Atlanta: 2002. http://www.atsdr.cdc.gov/toxprofiles/tp35.pdf.
  8. [8] van Loon GW, Duffy SJ. Environmental chemistry. Warszawa: WN PWN; 2007. ISBN: 9788301153243.
  9. [9] Jenkins BM, Baxter LL, Miles TR Jr, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;54:17-46. DOI: 10.1016/S0378-3820(97)00059-3.10.1016/S0378-3820(97)00059-3
  10. [10] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). OJ L 334, 17.12.2010. 17-119. https://eur-lex.europa.eu/eli/dir/2010/75/oj.
  11. [11] Zhang M, Buekens A, Li X. Dioxins from biomass combustion: an overview. Waste Biomass Valor. 2017;8:1-20. DOI 10.1007/s12649-016-9744-5.10.1007/s12649-016-9744-5
  12. [12] Wey MY, Liu KY, Yu WJ, Lin CL, Chang FY. Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds. Waste Manage. 2008;28(2):406-415. DOI: 10.1016/j.wasman.2006.12.008.10.1016/j.wasman.2006.12.00817320369
  13. [13] Lundin L, Jansson S. The effects of fuel composition and ammonium sulfate addition on PCDD, PCDF, PCN and PCB concentrations during the combustion of biomass and paper production residuals. Chemosphere. 2014;94:20-26. DOI: 10.1016/j.chemosphere.2013.01.090.10.1016/j.chemosphere.2013.01.09023466088
  14. [14] van den Berg M, Birnbaum L, Bosveld AT, Brunström B, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 1998;106:775-792. DOI: 10.2307/3434121.10.1289/ehp.9810677515332329831538
  15. [15] Lu P, Huang Q, Bourtsalas AC, Themelis NJ, Chi Y, Yan J. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci. 2019;78:13-28. DOI: 10.1016/j.jes.2018.09.003.10.1016/j.jes.2018.09.00330665632
  16. [16] Altobelli R, de Oliveira MCL. Corrosion in biomass combustion: A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies. Corros Sci. 2013;76:6-26. DOI: 10.1016/j.corsci.2013.07.013.10.1016/j.corsci.2013.07.013
  17. [17] Gruber T, Retschitzegger S, Scharler R, Obernberger I. Dominating high temperature corrosion mechanisms in low alloy steels in wood chips fired boilers. Energy Fuels. 2016;30(3):2385-2394. DOI: 10.1021/acs.energyfuels.5b02290.10.1021/acs.energyfuels.5b02290
  18. [18] Theis M, Skrifvars BJ, Zevenhoven M, Hupa M. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry. Fuel. 2006;85(14-15):1992-2001. DOI: 10.1016/j.fuel.2006.03.015.10.1016/j.fuel.2006.03.015
  19. [19] Fraissler G, Joller M, Brunner T, Obernberger I. Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination. Chem Eng Process. Process Intensification. 2009;8(1):380-388, DOI: 10.1016/j.cep.2008.05.003.10.1016/j.cep.2008.05.003
  20. [20] Lecomte T, de la Fuente JFF, Neuwahl F, Canova M, Pinasseau A, Jankov I, et al. Best Available Techniques (BAT). Reference Document for the Large Combustion Plants. Luxembourg: Publications Office of the European Union; 2017. ISBN: 9789279743030. DOI: 10.2760/949.
  21. [21] Weinell CE, Jensen PI, Dam-Johansen K, Livbjerg H. Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity. Ind Eng Chem Res. 1992;31:164-171. DOI: 10.1021/ie00001a023.10.1021/ie00001a023
  22. [22] Zhang C, Wang Y, Yang Z, Xu M. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis. Fuel. 2006;85(14-15):2034-2040. DOI: 10.1016/j.fuel.2006.04.009.10.1016/j.fuel.2006.04.009
  23. [23] Wey MY, Chen JC, Wu HY, Yu WJ, Tsai TH. Formations and controls of HCl and PAHs by different additives during waste incineration. Fuel. 2006; 85(5-6):755-763. DOI: 10.1016/j.fuel.2005.09.011.10.1016/j.fuel.2005.09.011
  24. [24] Fujita S, Suzuki K, Ohkawa M, Shibasaki Y, Mori T. Reaction of hydrogrossular with hydrogen chloride gas at high temperature. Chem Mater. 2001;13:2523-2527. DOI: 10.1021/cm000863r.10.1021/cm000863r
  25. [25] Olek M, Baron J, Żukowski W. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed. Chem Central J. 2013;7:2. DOI: 10.1186/1752-153X-7-2.10.1186/1752-153X-7-2
  26. [26] Tõnsuaadu K, Gross KA, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110(2):647-659. DOI: 10.1007/s10973-011-1877-y.10.1007/s10973-011-1877-y
  27. [27] Baron J, Bulewicz EM, Zabagło J, Żukowski W. Propagation of reaction between bubbles with a gas burning in a fluidised bed. Flow Turbul Combust. 2012;88(4):479-502. DOI: 10.1007/s10494-011-9362-z.10.1007/s10494-011-9362-z
  28. [28] Żukowski W. A simple model for explosive combustion of premixed natural gas with air in a bubbling fluidized bed of inert sand. Combust Flame. 2003;134:399-409. DOI: 10.1016/S0010-2180(03)00139-1.10.1016/S0010-2180(03)00139-1
  29. [29] Baron J, Żukowski W, Migas P. Premixed LPG + air combustion in a bubbling FBC with variable content of solid particles in the bubbles. Flow Turbul Combust. 2018;101(3):953-969. DOI: 10.1007/s10494-018-9925-3.10.1007/s10494-018-9925-3
  30. [30] Deydier E, Guilet R, Sarda S, Sharrock P. Physical and chemical characterisation of crude meat and bone meal combustion residue: “waste or raw material?”. J Hazard Mater. 2005;121(1-3):141-148. DOI: 10.1016/j.jhazmat.2005.02.003.10.1016/j.jhazmat.2005.02.003
  31. [31] Etok SE, Valsami-Jones E, Wess TJ, Hiller JC, et al. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807. DOI: 10.1007/s10853-007-1993-z.10.1007/s10853-007-1993-z
  32. [32] Gulyurtlu I, Pinto F, Abelha P, Lopes H, Crujeira AT. Pollutant emissions and their control in fluidised bed combustion and gasification. In: Scala F, editor. Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. Cambridge: Woodhead Publishing; 2013. ISBN: 9780857095411. DOI: 10.1533/9780857098801.2.435.10.1533/9780857098801.2.435
  33. [33] Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials. 1999;20:1807-1813. DOI: 10.1016/S0142-9612(99)00076-9.1050919110.1016/S0142-9612(99)00076-9
  34. [34] Demnati I, Grossin D, Combes C, Parco M, Braceras I, Rey C. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings. Biomed Mater. 2012;7(5):1-10. DOI:10.1088/1748-6041/7/5/054101.10.1088/1748-6041/7/5/05410122971953
  35. [35] Moseke C, Gbureck U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia. 2010;6(10): 3815-3823. DOI: 10.1016/j.actbio.2010.04.020.10.1016/j.actbio.2010.04.0202043886920438869
DOI: https://doi.org/10.1515/eces-2019-0006 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 69 - 80
Published on: Apr 15, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Małgorzata Olek, Witold Żukowski, Jerzy Baron, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.