Have a personal or library account? Click to login
Impact of Shelterbelts on Oxidation-Reduction Properties and Greenhouse Gases Emission from Soils Cover

Impact of Shelterbelts on Oxidation-Reduction Properties and Greenhouse Gases Emission from Soils

Open Access
|Jan 2019

References

  1. [1] Szajdak LW, Gaca W. Nitrate reductase activity in soil under shelterbelt and an adjoining cultivated field. Chem Ecol. 2010;26:123-134. DOI: 10.1080/02757540.2010.501028.10.1080/02757540.2010.501028
  2. [2] Ryszkowski L, Kędziora A. Modification of water flows and nitrogen fluxes by shelterbelts. Ecol Eng. 2007;29:388-400. DOI: 10.1016/j.ecoleng.2006.09.023.10.1016/j.ecoleng.2006.09.023
  3. [3] Recommendation No. R(94)6 of the Committee of Ministers to Member States for Sustainable Development and use of the Countryside with the Particular Focus on the Safeguarding of Wildlife and Landscapes (1994). Council of Europe Committee of Ministers. https://rm.coe.int/16804c1bdf.
  4. [4] Pedersen HD, Postma D, Jakobsen R, Larsen O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta. 2005;69:3967-3977. DOI: 10.1016/j.gca.2005.03.016.10.1016/j.gca.2005.03.016
  5. [5] Bateman EJ, Baggs EM. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils. 2005;41:379-388. DOI: 10.1007/s00374-005-0858-3.10.1007/s00374-005-0858-3
  6. [6] Marszałek M, Kowalski Z, Makara A. Emission of greenhouse gases and odorants from pig slurry - effect on the environment and methods of its reduction. Ecol Chem Eng S. 2018;25(3):383-394. DOI: 10.1515/eces-2018-0026.10.1515/eces-2018-0026
  7. [7] Szajdak L, Gaca W, Karg M. Impact of the age of shelterbelts and the composition of plants on the dissimilatory nitrate reductase activity in soils. Pol J Soil Sci. 2005;38:135-144. http://www.pjss.org/artykuly/pjss/Polish_Journal_of_Soil_Science_2005_38_2_135.pdf.
  8. [8] Malinowski M, Wolny-Koładka K. Microbiological and energetic assessment of the effects of the biodrying of fuel produced from waste. Ecol Chem Eng S. 2017;24(4):551-564. DOI: 10.1515/eces-2017-0036.10.1515/eces-2017-0036
  9. [9] Khalil MI, Baggs EM. CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem. 2005;37:1785-1794. DOI: 10.1016/j.soilbio.2005.02.012.10.1016/j.soilbio.2005.02.012
  10. [10] Das SK, Varma A. Role of enzymes in maintaining soil health. In: Shukla G, Varma A, editors. Soil Enzymology, Soil Biology 22. Berlin Heidelberg: Springer-Verlag; 2011. DOI: 10.1007/978-3-642-14225-3_2.10.1007/978-3-642-14225-3_2
  11. [11] Singh DK, Kumar S. Nitrate reductase arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamipirid treatments. Chemosphere. 2008;71:412-418. DOI: 10.1016/j.chemosphere.2007.11.005.10.1016/j.chemosphere.2007.11.00518082867
  12. [12] Kool DM, Dolfing J, Wrage N, Van Groenigen JW. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem. 2011;43:174-178. DOI: 10.1016/j.soilbio.2010.09.030.10.1016/j.soilbio.2010.09.030
  13. [13] Dec J, Haider K, Bollag JM. Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere. 2003;52:549-556. DOI: 10.1016/S0045-6535(03)00236-4.10.1016/S0045-6535(03)00236-4
  14. [14] Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol Biochem. 2002;34:651-660. DOI: 10.1016/S0038-0717(01)00227-9.10.1016/S0038-0717(01)00227-9
  15. [15] Meysner T, Szajdak LW. Impact of a forest island and Robinia pseudoacacia afforestation on peroxidase activity and iron ions in soils. In: Szajdak LW, Karabanov AK, editors. Physical, Chemical and Biochemical Processes in Soils. Poznań: Prodruk; 2010. ISBN: 9788361607564.
  16. [16] Butterbach-Bahl K, Willibald G, Papen H. Plant Soil. 2002;240:105-116. DOI: 10.1023/A:1015870518723.10.1023/A:1015870518723
  17. [17] Šimek M, Jíšová L, Hopkins DW. Soil Biol Biochem. 2002;34:1227-1234. DOI: 10.1016/S0038-0717(02)00059-7.10.1016/S0038-0717(02)00059-7
  18. [18] Partyka T, Hamkalo Z. Estimation of oxidizing ability of organic matter of forest and arable soil. Zemdirbyste. 2010;97:33-40.
  19. [19] Périé C, Ouimet R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can J Soil Sci. 2008;88:315-325. DOI: 10.4141/CJSS06008.10.4141/CJSS06008
  20. [20] Grybos M, Davranche M, Gruau G, Petitjean P. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J Colloid Interface Sci. 2007;314:490-501. DOI: 10.1016/j.jcis.2007.04.062.10.1016/j.jcis.2007.04.062
  21. [21] Tian L, Shi W. Soil peroxidase regulates organic matter decomposition through improving the accessibility of reducing sugars and amino acids. Biol Fertil Soils. 2014.50: 785-794. DOI: 10.1007/s00374-014-0903-1.10.1007/s00374-014-0903-1
  22. [22] Askin T, Kizilkaya R. Soil basal respiration and dehydrogenase activity of aggregates: a study in a toposequence of pasture soils. Zemdirbyste. 2009;96:98-112.
  23. [23] Kesik M, Ambus P, Baritz R, Bruggemann N, Butterbach-Bahl K, Damm M, et al. Inventories of N2O and NO emissions from European forest soils. Biogeosciences. 2005;2:353-375. DOI: 10.5194/bg-2-353-2005.10.5194/bg-2-353-2005
  24. [24] Abbasi MK, Adams WA. Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland under field conditions. Soil Biol Biochem. 2000;32:1251-1259. DOI: 10.1016/S0038-0717(00)00042-0.10.1016/S0038-0717(00)00042-0
  25. [25] Ullah S, Breitenbeck GA, Faulkner SP. Denitrification and N2O emission from forested and cultivated alluvial clay soil. Biogeochemistry. 2005;73:499-513. DOI: 10.1007/s10533-004-1565-0.10.1007/s10533-004-1565-0
  26. [26] Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, et al. Old-growth forests as global carbon sinks. Nature. 2008;455:213-215. DOI: 10.1038/nature07276.10.1038/07276
  27. [27] Maryganowa V, Szajdak LW, Tychinskaya L. Hydrophobic and hydrophilic properties of humic acids from soils under shelterbelts of different ages. Chem Ecol. 2010;26(4):25-33. DOI: 10.1080/02757540.2010.501138.10.1080/02757540.2010.501138
  28. [28] Szajdak LW, Maryganova V, Skakovskii E, Tychinskaya L. Transformations of organic matter in soils under shelterbelts of different ages in agricultural landscape. In: Szajdak LW, editor. Bioactive Compounds in Agricultural Soils. Switzerland: Springer International Publishing AG; 2016. ISBN: 9783319431062, DOI: 10.1007/978-3-319-43107-9_9.10.1007/978-3-319-43107-9_9
DOI: https://doi.org/10.1515/eces-2018-0043 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 643 - 658
Published on: Jan 3, 2019
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Lech Wojciech Szajdak, Wioletta Gaca, Jürgen Augustin, Teresa Meysner, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.