Have a personal or library account? Click to login
Artificial Neural Network Approach for Modeling of Ni(Ii) Adsorption from Aqueous Solution by Peanut Shell Cover

Artificial Neural Network Approach for Modeling of Ni(Ii) Adsorption from Aqueous Solution by Peanut Shell

By: Sayiter Yildiz  
Open Access
|Jan 2019

References

  1. [1] Çay S, Uyanik A, Özaşik A. Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using tea-industry waste. Separ Purif Technol. 2004;38(3):273-280. DOI: 10.1016/j.seppur.2003.12.003.10.1016/j.seppur.2003.12.003
  2. [2] Tabaraki R, Nateghi A. Multimetal adsorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol Eng. 2014;71:197-205. DOI: 10.1016/j.ecoleng.2014.07.031.10.1016/j.ecoleng.2014.07.031
  3. [3] Zimmerman JB, Mihelcic JR, Smith J. Global stressors on water quality and quantity. Environ Sci Technol. 2008;42:4247-4254. DOI: 10.1021/es0871457.1860554010.1021/es087145718605540
  4. [4] Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229-238. DOI: 10.1016/j.resconrec.2013.01.019.10.1016/j.resconrec.2013.01.019
  5. [5] Malamis S, Katsou E. A review on zinc and nickel adsorption on natural and modified zeolite bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater. 2013;252-253:428-461. DOI: 10.1016/j.jhazmat.2013.03.024.10.1016/j.jhazmat.2013.03.02423644019
  6. [6] Khairy M, El-Safty SA, Shenashen MA. Environmental remediation and monitoring of cadmium. TrAC Trend Anal Chem. 2014;62:56-68. DOI: 10.1016/j.trac.2014.06.013.10.1016/j.trac.2014.06.013
  7. [7] Pap S, Radonic J, Trifunovic S, Adamovic D, Mihajlovic I, Miloradov MV, et al. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes. J Environ Manage. 2016;184:297-306. DOI: 10.1016/j.jenvman.2016.09.089.10.1016/j.jenvman.2016.09.08927729179
  8. [8] Dawodua FA, Akpomie KG. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution onto a Nigerian kaolinite clay. J Mater Res Technol. 2014;3:129-141. DOI: 10.1016/j.jmrt.2014.03.002.10.1016/j.jmrt.2014.03.002
  9. [9] Vieira MGA, Almeida Neto AF, Gimenes ML, da Silva MGC. Removal of nickel on Bofe bentonite calcined clay in porous bed. J Hazard Mater. 2010;176:109-118. DOI: 10.1016/j.jhazmat.2009.10.128.10.1016/j.jhazmat.2009.10.12820022694
  10. [10] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92:407-418. DOI: 10.1016/j.jenvman.2010.11.011.10.1016/j.jenvman.2010.11.01121138785
  11. [11] Garba ZN, Shikin FBS, Afidah AR. Valuation of activated carbon from waste tea for the removal of a basic dye from aqueous solution. J Chem Eng Chem Res. 2015;2:623-633. https://s3.amazonaws.com/academia.edu.documents/37903468/JCECR_PAPER.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1518191815&Signature=EuAEpe05%2BXh%2FQ4XjINf2TnqKdqc%3D&response-content-disposition=inline%3B%20filename%3DValuation_of_Activated_Carbon_from_Waste.pdf.
  12. [12] Mohammadi M, Ghaemi A, Torab-Mostaedi M, Asadollahzadeh M, Hemmati A. Adsorption of cadmium(II) and nickel(II) on dolomite powder. Desal Water Treat. 2015;53:149-157. DOI: 10.1080/19443994.2013.836990.10.1080/19443994.2013.836990
  13. [13] Mondal S, Sinha K, Aikat K, Halder G. Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung seed husk. J Environ Chem Eng. 2015;3:187-195. DOI: 10.1016/j.jece.2014.11.021.10.1016/j.jece.2014.11.021
  14. [14] Qiu G, Xie Q, Liu H, Chen T, Xie J, Li H. Removal of Cu(II) from aqueous solutions using dolomite-palygorskite clay: performance and mechanisms. Appl Clay Sci. 2015;118:107-115. DOI: 10.1016/j.clay.2015.09.008.10.1016/j.clay.2015.09.008
  15. [15] Farghali AA, Bahgat M, Enaiet A, Khedr MH. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ J Basic Appl Sci. 2013;2:61-71. DOI: 10.1016/j.bjbas.2013.01.001.10.1016/j.bjbas.2013.01.001
  16. [16] Davarnejad R, Panahi P. Cu(II) and Ni(II) removal from aqueous solutions by adsorption on Henna and optimization of effective parameters by using the response surface methodology. J Industrial Eng Chem. 2016;33:270-275. DOI: 10.1016/j.jiec.2015.10.013.10.1016/j.jiec.2015.10.013
  17. [17] Cao J, Wu Y, Jin Y, Yilihan P, Huang W. Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41. J Taiwan Inst Chem Eng. 2014;45:860-868. DOI: 10.1016/j.jtice.2013.09.011.10.1016/j.jtice.2013.09.011
  18. [18] Akunwa NK, Muhammad MN, Akunna JC. Treatment of metal contaminated wastewater: a comparison of low-cost biosorbents. J Environ Manage. 2014;146:517-523. DOI: 10.1016/j.jenvman.2014.08.014.10.1016/j.jenvman.2014.08.01425218332
  19. [19] Anna B, Kleopas M, Constantine S, Anestis F, Maria B. Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems. Environ Earth Sci. 2015;73:5435-5444. DOI: 10.1007/s12665-014-3798-0.10.1007/s12665-014-3798-0
  20. [20] Sun Y, Wang Q, Chen C, Tan X, Wang X. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol. 2012;46:6020-6027. DOI: 10.1021/es300720f.10.1021/es300720f22550973
  21. [21] Sun YB, Zhang R, Ding CC, Wang XX, Cheng WC, Chen CL, et al. Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta. 2016;180:51-65. DOI: 10.1016/j.gca.2016.02.012.10.1016/j.gca.2016.02.012
  22. [22] Al Dwairi R, Al-Rawajfeh A. Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. J Univ Chem Technol Metall. 2012;41:69-76. http://dl.uctm.edu/journal/node/j2012-1/8_Al_Dwairi%20%2069-76.pdf.
  23. [23] Jiang MQ, Jin XY, Lu XQ, Chen ZL. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010;25:233-39. DOI: 10.1016/j.desal.2009.11.005.10.1016/j.desal.2009.11.005
  24. [24] Kapur M, Gupta R, Mondal MK. Parametric optimization of Cu(II) and Ni(II) adsorption onto coal dust and magnetized sawdust using Box-Behnken design of experiments. Environ Progress Sust Energy. 2016;35(6):1597-1604. DOI: 10.1002/ep.12393.10.1002/ep.12393
  25. [25] Vilvanathan S, Shanthakumar S. Removal of Ni(II) and Co(II) ions from aqueous solution using teak (Tectona grandis) leaves powder: adsorption kinetics, equilibrium and thermodynamics study. Desalin Water Treat. 2016;57:3995-4007. DOI: 10.1080/19443994.2014. 989913.10.1080/19443994.2014.989913
  26. [26] Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S. Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Eng J. 2011; 67:122-131. DOI: 10.1016/j.cej.2010.12.010.10.1016/j.cej.2010.12.010
  27. [27] Bojic DV, Nikolic GS, Mitrovic JZ, Radovic MD, Petrovic MM, Markovic DZ, et al. Kinetic, equilibrium and thermodynamic studies of Ni(II) ions sorption on sulfuric acid treated lagenaria vulgaris shell. Chem Ind Chem Eng Q. 2016;22(3):235-247. DOI: 10.2298/CICEQ150318037B.10.2298/CICEQ150318037
  28. [28] Tahervand T, Jalali M. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environ Monit Assess. 2016;188:322. DOI: 10.1007/s10661-016-5313-4.10.1007/s10661-016-5313-427147235
  29. [29] Garba ZN, Nkole I, Amina U, Abdullahi K. Evaluation of optimum adsorption conditions for Ni(II) and Cd(II) removal from aqueous solution by modified plantain peels (MPP). Beni-Suef Univ J Basic Appl Sci. 2016;5:170-179. https://ac.els-cdn.com/S2314853516300142/1-s2.0-S2314853516300142-main.pdf?_tid=19073e0a-0daa-11e8-a2f5-00000aacb361&acdnat=1518188665_61c173d67ac6e7dfafd0eb4aa6df7280.
  30. [30] Liao B, Sun W, Sang-lan Ding NG, Su S. Equilibriums and kinetics studies for adsorption of Ni(II) ion onchitosan and its triethylenetetramine derivative. Colloids and Surfaces A: Physicochem Eng Aspects. 2016;501:32-41. DOI: 10.1016/j.colsurfa.2016.04.043.10.1016/j.colsurfa.2016.04.043
  31. [31] Maleki S, Karimi-Jashni A. Effect of ball milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Appl Clay Sci. 2017;137:213-224. DOI: 10.1016/j.clay.2016.12.008.10.1016/j.clay.2016.12.008
  32. [32] Khataee AR, Dehghan G, Zarei M, Ebadi A, Pourhassan M. Neural network modeling of biotreatment of triphenylmethane dye solution by a gren macroalgae. Chem Eng Res Design. 2011;89:172-178. DOI: 10.1016/j.cherd.2010.05.009.10.1016/j.cherd.2010.05.009
  33. [33] Das B, Mondal NK. Calcareous soil as a new adsorbent to remove lead from aqueous solution: Equilibrium, kinetic and thermodynamic study. Uni J Environ Res Tech. 2011;1(4):515-530.
  34. [34] Khan TA, Shahjahan EA. Removal of basic dyes from aqueous solution by adsorption onto binaryiron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling. Appl Clay Sci. 2015;107:70-77. DOI: 10.1016/j.clay.2015.01.005.10.1016/j.clay.2015.01.005
  35. [35] Asl SMH, Ahmadi M, Ghiasvand M, Tardast A, Katal R. Artificial neural network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). J Ind Eng Chem. 2013;19:1044-1055. DOI: 10.1016/j.jiec.2012.12.001.10.1016/j.jiec.2012.12.001
  36. [36] Allen SJ, Gan Q, Matthews R, Johnson PA. Comparison of optimised isotherm models for basic dye adsorption by kuzdu. Bioresour Technol. 2003;88(2):143-152. DOI: 10.1002/(SICI)1097-4660(199704)68:4<;442.10.1002/(SICI)1097-4660(199704)68:4<;44212576008
  37. [37] Katal R, Sefti MV, Jafari M, Dehaghani AHS, Sharifian S, Ghayyem MA. Study effect of different parameters on the sulphate sorption onto nano alumina. J Ind Eng Chem. 2012;18:230-236. DOI: 10.1016/j.jiec.2011.11.012.10.1016/j.jiec.2011.11.012
  38. [38] Zhang J, Cai D, Zhang G, Cai C, Zhang C, Qiu G, et al. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl Clay Sci. 2013;83-84:137-143. DOI: 10.1016/j.clay.2013.08.033.10.1016/j.clay.2013.08.033
  39. [39] Ho YS, McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng. 1998;76(4):822-827. DOI: 10.1002/cjce.5450760419.10.1002/cjce.5450760419
  40. [40] Murugesan A, Ravikumar L, Sathya Selva Bala V, Senthil Kumar P, Vidhyadevi T, Dnesh Kirupha S, et al. Removal of Pb(II) Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: equilibrium and kinetic approach. Desalination. 2011;271:199-208. DOI: 10.1016/j.desal.2010.12.029.10.1016/j.desal.2010.12.029
  41. [41] Jamshidi M, Ghaedi M, Dashtian K, Hajati S, Bazrafshan AA. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: derivative spectrophotometric, optimization, kinetic and isotherm study. Ultrason Sonochem. 2016;32:119-131. DOI: 10.1016/j.ultsonch.2016.03.004.2715075210.1016/j.ultsonch.2016.03.00427150752
  42. [42] Shah J, Jan MR, Haq A, Zeeshan M. Equilibrium, kinetic and thermodynamic studies for sorption of Ni(II) from aqueous solution using formaldehyde treated waste tea leaves. J Saudi Chemical Soc. 2015;19(3):301-310. DOI: 10.1016/j.jscs.2012.04.004.10.1016/j.jscs.2012.04.004
  43. [43] Enayatollahi I, Bazzazi AA, Asadi A. Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines. Rock Mech Rock Eng. 2014;47:799-807. DOI: 10.1007/s00603-013-0415-6.10.1007/s00603-013-0415-6
  44. [44] Chairez I, Garcia-Pena I, Cabrera A. Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network. J Process Control. 2009;19:1103-1110. DOI: 10.1016/j.jprocont.2008.12.009.10.1016/j.jprocont.2008.12.009
  45. [45] Yildiz S, Değirmenci M. Estimation of oxygen exchange during treatment sludge composting through multiple regression and artificial neural networks. Int J Environ Res. 2015;9(4):1173-1182. DOI: 10.22059/IJER.2015.1007.10.22059/IJER.2015.1007
  46. [46] Agarwal S, Tyagi I, Kumar GV, Ghaedi M, Masoomzade M. Kinetics and thermodynamics of methyl orange adsorption from aqueous solutions-artificial neural network-particle swarm optimization modeling. J Molecular Liquids. 2016;218:354-362. DOI: 10.1016/j.molliq.2016.02.048.10.1016/j.molliq.2016.02.048
  47. [47] Ghaedi M, Zeinali N, Maghsoudi M, Purkait MK. Artificial Neural Network (ANN) method for modeling of sunset yellow dye adsorption using nickel sulfide nanoparticle loaded on activated carbon: kinetic and isotherm study. J Dispersion Sci Tech. 2015;36:1339-1348. DOI: 10.1080/01932691.2014.964359.10.1080/01932691.2014.964359
  48. [48] Kunnambath PM, Thirumalaisamy S. Characterization and utilization of tannin extract for the selective adsorption of Ni(II) ions from water. Hindawi Publ Corp J Chem. 2015;9 pages. DOI: 10.1155/2015/498359.10.1155/2015/498359
  49. [49] Zhao Y, Yang S, Ding D, Chen J, Yang Y, Lei Z, et al. Effective adsorption of Cr(VI) from aqueous solution using natural akadama clay. J Colloid Interface Sci. 2013;395:198-204. DOI: 10.1016/j.jcis.2012.12.054.10.1016/j.jcis.2012.12.054
  50. [50] Zhu X, Lan L, Xiang N, Liu W, Zhao Q, Li H. Thermodynamic studies on the adsorption of Cu2+, Ni2+ and Cd2+ onto amine-modified bentonite. Bull Chem Soc Ethiop. 2016;30(3):357-367. DOI: 10.4314/bcse.v30i3.4.10.4314/bcse.v30i3.4
  51. [51] Kiliç F, Sarici Özdemir Ç. Experimental and modeling studies of methylene blue adsorption onto particles of peanut shell. Part Sci Tech. 2016;34(6):658-664. DOI: 10.1080/02726351.2015.1102188.10.1080/02726351.2015.1102188
  52. [52] Alothman ZA, Naushad M, Ali R. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid. Environ Sci Pollut Res. 2013;20:3351-3365. DOI: 10.1007/s11356-012-1259-4.10.1007/s11356-012-1259-4
  53. [53] Malkoc E, Nuhoglu Y. Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J Hazard Mater. 2005;127(1-3):120-128. DOI: 10.1016/j.jhazmat.2005.06.030.10.1016/j.jhazmat.2005.06.030
  54. [54] Mahramanlioglu M, Kizilcikli I, Bicer IO. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J Fluorine Chem. 2002;115(1);41-47. DOI: 10.1016/S0022-1139(02)00003-9.10.1016/S0022-1139(02)00003-9
  55. [55] Giwa AA, Abdulsalam KA, Wewers F, Oladipo MA. Biosorption of acid dye in single and multidye systems onto sawdust of locust bean (Parkia biglobosa) tree. Hindawi Publish Corp J Chem. 2016;Article ID 6436039,11 pages. DOI: 10.1155/2016/6436039.10.1155/2016/6436039
  56. [56] Maheshwari U, Mathesan B, Gupta S. Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): Kinetic, thermodynamics and mass transfer mechanism. Proc Safety Environ Protec. 2015;98:198-210. DOI: 10.1016/j.psep.2015.07.010.10.1016/j.psep.2015.07.010
  57. [57] Li H, Huang G, An C, Hu J, Yang S. Removal of tannin from aqueous solution by adsorption onto treated coal fly ash: kinetic, equilibrium, and thermodynamic studies. Ind Eng Chem Res. 2013;52:15923-15931. DOI: 10.1021/ie402054w.10.1021/ie402054w
  58. [58] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007
  59. [59] Luo X, Zhang L. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J Hazard Mater. 2009;171:340-347. DOI: 10.1016/j.jhazmat.2009.06.009.10.1016/j.jhazmat.2009.06.00919646813
  60. [60] Sawalha MF, Videa JRP, Gonzalez JR, Gardea-Torresdey JL. Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. J Colloid Interface Sci. 2006;300:100-104. DOI: 10.1016/j.jcis.2006.03.029.10.1016/j.jcis.2006.03.02916600278
  61. [61] Kłos A. Determination of sorption properties of heavy metals in various biosorbents. Ecol Chem Eng S. 2018;25(2): 201-216. DOI: 10.1515/eces-2018-0013.10.1515/eces-2018-0013
  62. [62] Abd El-Latif M, Elkady M. Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination. 2010;255:21-43. DOI: 10.1016/j.desal.2010.01.020.10.1016/j.desal.2010.01.020
  63. [63] Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol. 1996;17:71-77. DOI: 10.1080/09593331708616362.10.1080/09593331708616362
  64. [64] Li Q, Zhai J, Zhang W, Wang M, Zhou J. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J Hazard Mater. 2007;141:163-167. DOI: 10.1016/j.jhazmat.2006.06.109.10.1016/j.jhazmat.2006.06.10916930824
  65. [65] Vaghetti JCP, Lima EC, Royer B, Cardoso NF, Martins B, Calvete T. Pecan nutshell as biosorbent to remove toxic metals from aqueous solution. Sep Sci Technol. 2009;44:615-644. DOI: 10.1080/01496390802634331.10.1080/01496390802634331
  66. [66] Mohan D, Singh KP. Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse an agricultural waste. Water Res. 2002;36:2304-2318. DOI: 10.1016/S0043-1354(01)00447-X.10.1016/S0043-1354(01)00447-X
  67. [67] Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J Hazard Mater. 2008;152:407-414. DOI: 10.1016/j.jhazmat.2007.07.028.10.1016/j.jhazmat.2007.07.028
  68. [68] Kulkarni RM, Shetty KV, Srinikethan G. Cadmium(II) and nickel(II) biosorption by Bacillus laterosporus (MTCC 1628). J Taiwan Inst Chem Eng. 2014;45(4):1628-1635. DOI: 10.1016/j.jtice.2013.11.006.10.1016/j.jtice.2013.11.006
  69. [69] Ahmad MF, Haydar S, Quraishi TA. Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeter Biodeg. 2013;83:119-128. DOI: 10.1016/j.ibiod.2013.04.016.10.1016/j.ibiod.2013.04.016
  70. [70] Allen SJ, Whitten LI, Murkal M, Duggan O. The adsorption of pollutants by peat, lignite and activated chars. J Chem Tech Biotechnol. 1997;68(4):442-452. DOI: 10.1002/(SICI)1097-4660(199704)68:4<;442.10.1002/(SICI)1097-4660(199704)68:4<;442
  71. [71] Bulut Y, Aydin HA. Kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination. 2006;194:259-267. DOI: 10.1016/j.desal.2005.10.032.10.1016/j.desal.2005.10.032
  72. [72] Rehab MA, Hesham AH, Mohamed MH, Gihan FM. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng. 2016;91:317-332. DOI: 10.1016/j.ecoleng.2016.03.015.10.1016/j.ecoleng.2016.03.015
  73. [73] Garza-Gonzalez MT, Alcalá-Rodríguez MM, Pérez-Elizondo R, Cerino-Córdova FJ, Garcia-Reyes RB, Loredo-Medrano JA. Artificial neural network for predicting biosorption of methylene blue by Spirulina sp. Water Sci Technol. 2011;63:977-983. DOI: 10.2166/wst.2011.279.10.2166/wst.2011.27921411949
  74. [74] Gomez-Gonzalez R, Cerino-Córdova FJ, Garcia-León AM, Soto-Regalado E, Davila-Guzman. NE, Salazar-Rabago JJ. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J Taiwan Inst Chem Eng. 2011;68:201-210. DOI: 10.1016/j.jtice.2016.08.038.10.1016/j.jtice.2016.08.038
  75. [75] Marjan T, Seyyed Hossein H, Asieh DK, Martin O, Kianoush K, Reza R, Imran A. Artificial neural network optimization form ethyl orange adsorption ontopolyaniline nano-adsorbent: Kinetic, isotherm and thermodynamic studies. J Molec Liquids. 2017;244:189-200. DOI: 10.1016/j.molliq.2017.08.122.10.1016/j.molliq.2017.08.122
  76. [76] Rezvan K, Fakhri Y, Mehrorang G, Kheibar D. Back propagation artificial neural network and central composite design modeling of operational parameter impact for sunset yellow and azur (II) adsorption onto MWCNT and MWCNT-Pd-NPs: Isotherm and kinetic study. Chemomet Intelligent Lab Systems. 2016;159:127-137. DOI: 10.1016/j.chemolab.2016.10.012.10.1016/j.chemolab.2016.10.012
  77. [77] Maghsoudi M, Ghaedi M, Zinali A, Ghaedi AM, Habibi MH. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study. Spec Acta Part A: Molec Biomolec Spectr. 2015;134:1-9. DOI: 10.1016/j.saa.2014.06.106.10.1016/j.saa.2014.06.10624995412
DOI: https://doi.org/10.1515/eces-2018-0039 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 581 - 604
Published on: Jan 3, 2019
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Sayiter Yildiz, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.