Have a personal or library account? Click to login
Screening of Silver-Tolerant Bacteria from a Major Philippine Landfill as Potential Bioremediation Agents Cover

Screening of Silver-Tolerant Bacteria from a Major Philippine Landfill as Potential Bioremediation Agents

Open Access
|Oct 2018

References

  1. [1] Silver S, Phung LT, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol. 2006;33(7)627-634. DOI: 10.1007/s10295-006-0139-7.10.1007/s10295-006-0139-716761169
  2. [2] Massarsky A, Trudeau VL, Moon TW. Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol. 2014;38(3):861-873. DOI: 10.1016/j.etap.2014.10.006.10.1016/j.etap.2014.10.0062546154625461546
  3. [3] Quadros ME, Marr LC. Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manage Assoc. 2010;60(7):770-781. https://www.ncbi.nlm.nih.gov/pubmed/20681424.10.3155/1047-3289.60.7.77020681424
  4. [4] Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. The release of nanosilver from consumer products used in the home. J Environ Qual. 2010;39(6):1875-1882. https://www.ncbi.nlm.nih.gov/pubmed/21284285.10.2134/jeq2009.0363477391721284285
  5. [5] Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42(11):4133-4139. DOI: 10.1021/es7032718.10.1021/es703271818589977
  6. [6] Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardlii. Environ Sci Technol. 2008;42(23):8959-8964. DOI: 10.1021/es801785m.10.1021/es801785m19192825
  7. [7] Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, et al. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabdilis elegans using functional ecotoxicogenomics. Environ Sci Technol. 2009;43(10):3933-3940. https://www.ncbi.nlm.nih.gov/pubmed/19544910.10.1021/es803477u19544910
  8. [8] Percival SL, Woods E, Nutekpor M, Bowler P, Radford A, Cochrane C. Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers and efficacy of silver-containing wound dressings. Ostomy Wound Manage. 2008;54(3):30-40. https://www.ncbi.nlm.nih.gov/pubmed/18382046.
  9. [9] El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol. 2009. Article ID 754810. DOI:10.1155/2009/754810.10.1155/2009/754810280933220130771
  10. [10] Greulich C, Kittler S, Epple M, Muhr G, Köller M. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg. 2009;394(3):495-502. DOI: 10.1007/s00423-009-0472-1.10.1007/s00423-009-0472-119280220
  11. [11] Harzevili FD, Chen H. Microbial Biotechnology: Progress and Trends. CRC Press; 2017. ISBN: 9781138748699.10.1201/9781351228701
  12. [12] Kumar BL, Gopal DVRS. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 2015;5(6):867. DOI: 10.1007/s13205-015-0293-6.10.1007/s13205-015-0293-6462413928324402
  13. [13] Zhang S, Wang Q, Wan R, Xie S, Zhejiang J. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil. Univ Sci B. 2011;12(9):760-768. DOI: 10.1631/jzus.B1000440.10.1631/jzus.B1000440316791021887852
  14. [14] Chen WY, Wu JH, Lin YY, Huang HJ, Chang JE. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: microcosm study and microbial community analysis. J Hazard Mater. 2013;261:351-361. DOI: 10.1016/j.jhazmat.2013.07.039.10.1016/j.jhazmat.2013.07.03923959255
  15. [15] Xenia ME, Refugio RV. Microorganisms metabolism during bioremediation of oil contaminated soils. J Bioremed Biodegr. 2016;7:340. DOI: 10.4172/2155-6199.1000340.10.4172/2155-6199.1000340
  16. [16] Durán M, Faljoni-Alario A, Durán N. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Folia Microbiol (Praha). 2010;55(6):535-547. DOI: 10.1007/s12223-010-0088-4.10.1007/s12223-010-0088-421253897
  17. [17] Yang C, Song C, Mulchandani A, Qiao C. Genetic engineering of Stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. J Agric Food Chem. 2010;58(11):6762-6766. DOI: 10.1021/jf101105s.10.1021/jf101105s20455565
  18. [18] Jiang J, Liu H, Li Q, Gao N, Yao Y, Xu H. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicol Environ Saf. 2015;120:386-393. DOI: 10.1016/j.ecoenv.2015.06.028.10.1016/j.ecoenv.2015.06.02826117363
  19. [19] Zinicovscaia I, Rudi L, Valuta A, Cepoi L,Vergel K, Frontasyeva MV, et al. Biochemical changes in Nostoc linckia associated with selenium nanoparticles biosynthesis. Ecol Chem Eng S. 2016; 23(4): 559-569. DOI: 10.1515/eces-2016-0039.10.1515/eces-2016-0039
  20. [20] Gargi B, Ranjit D, Sufia K. Chromium bioremediation by Alcaligenes faecalis strain P-2 isolated from tannery effluents. J Environ Res Develop. 2015;9:3A. https://www.researchgate.net/publication/288991602.
  21. [21] Ghoreishi G, Alemzadeh A, Mojarrad M, Djavaheri M. Kerosene biodegradation ability and characterization of bacteria isolated from oil-polluted soil and water. J Environ Chem Eng. 2016;4(4):4323-4329. DOI: 10.1016/j.jece.2016.09.035.10.1016/j.jece.2016.09.035
  22. [22] Kundu D, Hazra C, Chaudhari A. Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluene-contaminated soils: the effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil Sediment Contamin, Int J. 2016;25(6):637-651. DOI: 10.1080/15320383.2016.1190313.10.1080/15320383.2016.1190313
  23. [23] Liu W, Luo Y, Teng Y, Li Z, Ma L. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health. 2010;32(1):23-29. DOI: 10.1007/s10653-009-9262-5.10.1007/s10653-009-9262-519363671
  24. [24] Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 2009;77(2):153-160. DOI: 10.1016/j.chemosphere.2009.06.047.10.1016/j.chemosphere.2009.06.04719647283
  25. [25] Sameera V. Novel techniques in the production of industrially imperative products. J Microbial Biochem Technol R1:003. 2011. DOI: 10.4172/1948-5948.R1-003.10.4172/1948-5948.R1-003
  26. [26] Padil VVT, Wacławek S, Černík M. Green synthesis: nanoparticles and nanofibres based on tree gums for environmental applications. Ecol Chem Eng S. 2016; 23(4):533-557. DOI: 10.1515/eces-2016-0038.10.1515/eces-2016-0038
  27. [27] Smokey Mountain Remediation and Development Project: Philippines. Poverty Environment Partnership. 25 October 2012. Accessed 24 Oct 2016. http://www.povertyenvironment.net/adb/subprojects/phi-smokey.
  28. [28] Torres, Tetch. “SC upholds Smokey Mountain contract between NHA, R-II”. Inquirer.net. Posted 15 August 2007. Accessed 24 Oct 2016. https://tetchtorres.wordpress.com/2007/08/15/sc-upholds-smokey-mountain-contract-between-nha-r-ii/.
  29. [29] Medina M. The World’s Scavengers: Salvaging for Sustainable Consumption and Production. Lanham, MD [u.a.]: AltaMira Press; 2007. ISBN 0759109419.
  30. [30] Bergey DH, Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s Manual of Determinative Bacteriology, 9th ed. Baltimore: Williams and Wilkins. 1994. https://archive.org/stream/bergeysmanualofd00amer/bergeysmanualofd00amer_djvu.txt.
  31. [31] Pisapia C, Gerard E, Gerard M, Meñez B. Mineralizing filamentous bacteria from the Porny Bay hydrothermal field give new insights into the functioning of sepentization-based subseafloor ecosystems. Front Microbiol. 2017;8:7. DOI: 10.3389/fmicb.2017.00057.10.3389/fmicb.2017.00057528157828197130
  32. [32] Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows. 95/98/NT. Nucl Acids Symp Ser. 1999;41:95-98. http://brownlab.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf.
  33. [33] Hall TA. BioEdit: An important software for molecular biology. GERF Bull Biosci. 2011;2(1):60-61. https://www.gerfbb.com/images/upload/article/pdf/1387127438.
  34. [34] https://www.ncbi.nlm.nih.gov/.
  35. [35] Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9(4):286-298. DOI: 10.1093/bib/bbn013.1837231510.1093/bib/bbn01318372315
  36. [36] Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564-577. DOI: 10.1080/10635150701472164.1765436210.1080/1063515070147216417654362
  37. [37] Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Molecular Biol Evolution. 1992;9:945-967. DOI: 10.1093/oxfordjournals.molbev.a040771.10.1093/oxfordjournals.molbev.a040771
  38. [38] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biol Evolution. 2016;33(7):1870-1874. DOI: 10.1093/molbev/msw054.10.1093/molbev/msw054821082327004904
  39. [39] Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39(4):783-791. DOI: 10.1111/j.1558-5646.1985.tb00420.x.10.1111/j.1558-5646.1985.tb00420.x28561359
  40. [40] Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3(2):168-171. DOI: 10.1016/j.nano.2007.02.001.10.1016/j.nano.2007.02.00117468052
  41. [41] Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115-1122. DOI: 10.1007/s00253-009-2159-5.10.1007/s00253-009-2159-5
  42. [42] Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl. 2010;106:359-364. DOI: 10.1007/978-3-211-98811-4_65.10.1007/978-3-211-98811-4_65
  43. [43] Liau, SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997;25(4):279-283. DOI: 10.1046/j.1472-765X.1997.00219.x.10.1046/j.1472-765X.1997.00219.x
  44. [44] Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomedical Mater Res Part B: Appl Biomaterials. 2000;53(6):621-631. DOI: 10.1002/1097-4636(2000)53:63.0.CO;2-Q.10.1002/1097-4636(2000)53:63.0.CO;2-Q
  45. [45] Fox CL, Modak SM. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother. 1974;5(6)582-588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC429018/.10.1128/AAC.5.6.582
  46. [46] Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 2009;20(8):085102. DOI: 10.1088/0957-4484/20/8/085102.19417438
  47. [47] McHugh GL, Moellering RC, Hopkins CC et al. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet. 1975;1(7901):235-240. DOI: 10.1016/S0140-6736(75)91138-1.10.1016/S0140-6736(75)91138-1
  48. [48] Gupta A, Matsui K, Lo JF et al. Molecular basis for resistance to silver cations in Salmonella. Nat Med. 1999;5(2):183-188. DOI: 10.1038/5545.993086610.1038/5545
  49. [49] Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003; 27:(2-3):341-353. DOI: 10.1016/S0168-6445(03)00047-0.10.1016/S0168-6445(03)00047-0
  50. [50] Gupta A, Phung LT, Taylor DE, Silver S. Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology. 2001;147:3393-3402. DOI: 10.1099/00221287-147-12-3393.10.1099/00221287-147-12-3393
  51. [51] Sandegren L, Linkevicius M, Lytsy B, Melhus Å, Andersson DI. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother. 2012;67(1):74-83. DOI: 10.1093/jac/dkr405.10.1093/jac/dkr40521990049
  52. [52] Sütterlin S. Aspects of Bacterial Resistance to Silver. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1084. Uppsala: Acta Universitatis Upsaliensis. 2015. 64 pp. ISBN 978915549205. https://www.diva-portal.org/smash/get/diva2:796254/FULLTEXT01.pdf.
  53. [53] Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D’Oriano V, et al. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci. 2012;13(8):843-854. DOI: 10.2174/138920312804871120.10.2174/138920312804871120370695623305369
  54. [54] Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000;37(2):239-253. DOI: 10.1046/j.1365-2958.2000.01983.10.1046/j.1365-2958.2000.01983
  55. [55] Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593-656. DOI: 10.1128/MMBR.67.4.593-656.2003.10.1128/MMBR.67.4.593-656.200330905114665678
  56. [56] Hancock RE, Bell A. Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis. 1988;7(6):713-720. DOI: 10.1007/978-3-642-46666-3_6.10.1007/978-3-642-46666-3_6
  57. [57] Achouak W, Heulin T, Pages JM. Multiple facets of bacterial porins. FEMS Microbiol Lett. 2001;199(1):1-7.10.1111/j.1574-6968.2001.tb10642.x11356559
  58. [58] Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol. 2002;3(2):77-98. DOI : 10.2174/1389201023378454.10.2174/13892010233784541202226112022261
  59. [59] Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Molecular Microbiol. 2000;37(2):219-225. DOI: 10.1046/j.1365-2958.2000.01926.10.1046/j.1365-2958.2000.01926
  60. [60] Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Molecular Microbiol. 1996;19(1):101-112. DOI: 10.1046/j.1365-2958.1996.357881.10.1046/j.1365-2958.1996.357881
  61. [61] Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta. 2009;1794(5): 769-81. DOI:10.1016/j.bbapap.2008.10.004.1902677010.1016/j.bbapap.2008.10.004269689619026770
  62. [62] Ren Q, Chen K, Paulsen IT. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 2007;35(D274-D279). DOI: 10.1093/nar/gkl925.10.1093/nar/gkl925174717817135193
  63. [63] Huelsenbeck JP, Ronquist F. Bayesian Analysis of Molecular Evolution using MrBayes. In: Statistical Methods in Molecular Evolution. Springer Science & Business Media;2005. DOI: 10.1007/0-387-27733-1_7.10.1007/0-387-27733-1_7
  64. [64] Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755. DOI: 10.1093/bioinformatics/17.8.754.11524383
  65. [65] Saklani V, Suman, Jain VK. Microbial synthesis of silver nanoparticles: a review. J Biotechnol Biomaterial. 2012;S13:007. DOI: 10.4172/2155-952X.S13-007.10.4172/2155-952X.S13-007
  66. [66] Balaji DS, Basavaraja S, Deshpande R, Mahesh D, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticle by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68(1):88-92. DOI: 10.1016/j.colsurfb.2008.09.022.10.1016/j.colsurfb.2008.09.02218995994
  67. [67] Wani IA, Khatoon S, Ganguly A, Ahmed J, Ganguli AK, Ahmad T. Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater Res Bull. 2010;45(8):1033-1038. DOI: 10.1016/j.materresbull.2010.03.028.10.1016/j.materresbull.2010.03.028
  68. [68] Esfandiary R, Hunjan JS, Lushington G, Joshi S, Middaugh R. Temperature dependent 2nd derivative absorbance spectroscopy of aromatic amino acids as a probe of protein dynamics. Protein Sci. 2009;18(12):2603-2614. DOI: 10.1002/pro.264.10.1002/pro.264282127819827094
  69. [69] Hristovski KD, Nguyen H, Westerhoff PK. Removal of arsenate and 17-ethinyl estradiol (EE2) by iron (hydr) oxide modified activated carbon fibers. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009:44(4):354-361. DOI: 10.1080/10934520802659695.10.1080/1093452080265969519184702
  70. [70] Huang J, Cao Y, Liu Z, Deng Z, Tang F, Wang W. Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chem Eng J. 2012;180:75-80. DOI: 10.1016/j.cej.2011.11.005.10.1016/j.cej.2011.11.005
  71. [71] Khan SB, Marwani, HM, Asiri AM, Bakhsh EM. Exploration of calcium doped zinc oxide nanoparticles as selective adsorbent for extraction of lead ion. Desalin Water Treat. 2016;57(41)1-10. DOI: 10.1080/19443994.2015.1109560.10.1080/19443994.2015.1109560
  72. [72] Liu M, Chen C, Hu J, Wu X, Wang X. Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal. J Phys Chem C. 2011;115(51):25234-25240. DOI: 10.1021/jp208575m.10.1021/jp208575m
  73. [73] Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, et al. Magnetic nanocomposites for environmental remediation. Adv Powder Technol. 2013;24(2):459-467. DOI: 10.1016/j.apt.2012.10.012.10.1016/j.apt.2012.10.012
  74. [74] Yadav KJ, Singh K, Gupta N, Kumar V. A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci. 2017;8(2):740-757. https://www.jmaterenvironsci.com/Document/vol8/vol8_N2/78-JMES-2831-Yadav.pdf.
  75. [75] Watlington K. U.S. Environmental Protection Agency, August 2005; www.epa.gov; www.clu-in.org. Accessed June 2017.
DOI: https://doi.org/10.1515/eces-2018-0032 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 469 - 485
Published on: Oct 23, 2018
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Joan S. Adriano, Glenn G. Oyong, Esperanza C. Cabrera, Jose Isagani B. Janairo, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.