Have a personal or library account? Click to login
Heavy Metal Adsorption by Dewatered Iron-Containing Waste Sludge Cover

Heavy Metal Adsorption by Dewatered Iron-Containing Waste Sludge

Open Access
|Oct 2018

References

  1. [1] Wan Ngah WS, Hanafiah MAKM. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents. A review. Bioresour Technol. 2008;99:3935-3948. DOI: 10.1016/j.biortech.2007.06.011.10.1016/j.biortech.2007.06.01117681755
  2. [2] Zadavıcıüte S, Baltakys K, Eısınas A. Adsorption kinetic parameters of Fe3+ and Ni2+ ions by gyrolite. Materıals Scı. (Medžıagotyra). 2015;21(1):117-122. DOI: 10.5755/j01.ms.21.1.5735.10.5755/j01.ms.21.1.5735
  3. [3] Kamiński K, Kamiński W, Mizerski T. Application of artificial neural networks to the technical condition assessment of water supply systems. Ecol Chem Eng S. 2017;24(1):31-40. DOI: 10.1515/eces-2017-0003.10.1515/eces-2017-0003
  4. [4] Blakemore R, Chandler R, Surrey T, Ogilvie D, Walmsley N. Management of Water Treatment Plant Residuals in New Zealand, first ed. Auckland: Water Supply Managers’ Group, New Zealand Water and Wastes Association; 1998; 56.
  5. [5] Zhao YQ, Babatunde AO, Hu YS, Kumar JLG, Zhao XH. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 2011;46(1):278-283. DOI: 10.1016/j.procbio.2010.08.023.10.1016/j.procbio.2010.08.023
  6. [6] Vaebi F, Batebi F. Recovery of iron coagulants from tehran water-treatment-plant sludge for reusing in textile wastewater treatment. Iran J Public Health. 2001;30(3-4):135-138.
  7. [7] Miroslav K. Opportunities for water treatment sludge reuse, J Geosci Eng. 2008;54(1):11-22.
  8. [8] Pereira FR, Nunes AF, Segadaes AM, Labrincha JA. Refractory mortars made of different wastes and natural sub-products. Key Eng Mater. 2004;264-268:1743-1747. DOI: 10.4028/www.scientific.net/KEM.264-268.1743.10.4028/www.scientific.net/KEM.264-268.1743
  9. [9] Siswoyo E, Mihara Y, Tanaka S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Appl Clay Sci. 2014;97-98:146-152. DOI: 10.1016/j.clay.2014.05.024.10.1016/j.clay.2014.05.024
  10. [10] Cherifi M, Hazourli S, Pontvianne S, Leclerc JP, Lapicque F. Electrokinetic removal of aluminum from water potabilization treatment sludge. Desalination. 2011;281(17):263-270. DOI: 10.1016/j.desal.2011.07.071.10.1016/j.desal.2011.07.071
  11. [11] Hong GX, Hao CG, Chii S. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Water Res. 2005;39(15):433-3440. DOI: 10.1016/j.watres.2004.07.033.10.1016/j.watres.2004.07.03316095658
  12. [12] Yang L, Wei J, Zhang YM, Wang JL, Wang DT. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater. Appl Surf Sci. 2014;305:337-346. DOI: 10.1016/j.apsusc.2014.03.081.10.1016/j.apsusc.2014.03.081
  13. [13] Krishna KCB, Aryal A, Jansen T. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater. J Environ Manage. 2016;180:17-23. DOI: 10.1016/j.jenvman.2016.05.006.10.1016/j.jenvman.2016.05.00627192387
  14. [14] Hasan H, Abdullah SRS, Kofli NT, Kamarudin SK. Isotherm equilibria of Mn2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J Environ Manage. 2012;30:34-43. DOI: 10.1016/j.jenvman.2012.06.027.10.1016/j.jenvman.2012.06.02722813857
  15. [15] Vinitnantharat S, Kositchaiyong S, Chiarakorn S. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge. Appl Surf Sci. 2010;256(17-15):5458-5462. DOI: 10.1016/j.apsusc.2009.12.140.10.1016/j.apsusc.2009.12.140
  16. [16] Gibbons MK, Gagnon GA. Adsorption of arsenic from a Nova Scotia ground-water onto water treatment residual solids. Water Res. 2010;44:5740-5749. DOI: 10.1016/j.watres.2010.06.050.10.1016/j.watres.2010.06.05020663534
  17. [17] Kim YS, Kim DH, Yang JS, Baek K. Adsorption characteristics of As(III) and As(V) on alum sludge from water purification facilities. Sep Sci Technol. 2012;47:2211-2217. DOI: 10.1080/01496395.2012.700676.10.1080/01496395.2012.700676
  18. [18] Irawan C, Liu JC, Wu CC. Removal of boron using aluminum-based water treatment residuals (Al-WTRs). Desalination. 2011;276:322-327. DOI: 10.1016/j.desal.2011.03.070.10.1016/j.desal.2011.03.070
  19. [19] Yang L, Wei J, Liu Z, Wang J, Wang D. Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater. Appl Surf Sci. 2015;330:228-236. DOI: 10.1016/j.apsusc.2015.01.017.10.1016/j.apsusc.2015.01.017
  20. [20] Zhou YF, Haynes RJ. Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water Air Soil Pollut. 2011;215:631-643. DOI: 10.1007/s11270-010-0505-y.10.1007/s11270-010-0505-y
  21. [21] Lai JY, Liu JC. Co-conditioning and dewatering of alum sludge and waste activated sludge. Water Sci Technol. 2004;50(9):41-48.10.2166/wst.2004.0530
  22. [22] Hegazy BE, Fouad HA, Hassanain AM. Incorporation of water sludge, silica fume, and rice husk ash in brick making. Adv Environ Res. 2012;1(1):83-96. DOI: 10.1.1.665.8293.10.12989/aer.2012.1.1.083
  23. [23] Kizinievic O, Zurauskiene R, Kizinievic V, Zurauskas R. Utilisation of sludge waste from water treatment for ceramic products. Constr Build Mater. 2013;41:464-473. DOI: 10.1016/j.conbuildmat.2012.12.041.10.1016/j.conbuildmat.2012.12.041
  24. [24] Dayton EA, Basta NT. Characterization of drinking water treatment residuals for use as a soil substitute. Water Environ Res. 2001;73(1):52-57. DOI: 10.2175/106143001X138688.10.2175/106143001X138688
  25. [25] Rigby H, Pritchard D, Collins D, Walton K, Penney N. The use of alum sludge to improve cereal production on a nutrient-deficient soil. Environ Technol. 2013;34:1359-1368. DOI: 10.1080/09593330.2012.747037.10.1080/09593330.2012.74703724191468
  26. [26] Husillos Rodrguez N, Martnez-Ramrez S, Blanco-Varela MT, Guillem M, Puig J, Larrotcha E, et al. Evaluation of spray-dried sludge from drinking water treatment plants as a prime material for clinker manufacture. Cem Concr Compos. 2011;33:267-275. DOI: 10.1016/j.cemconcomp.2010.10.020.10.1016/j.cemconcomp.2010.10.020
  27. [27] Kayranlı B. Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chem Eng J. 2011;173:782-791. DOI: doi.org/10.1016/j.cej.2011.08.051.10.1016/j.cej.2011.08.051
  28. [28] Macek-Kamińska K, Stemplewski S. Application of neural networks in diagnostics of chemical compounds based on their infrared spectra. Ecol Chem Eng S. 2017;24(1):107-118. DOI: 10.1515/eces-2017-0008.10.1515/eces-2017-0008
  29. [29] Chen B, Zhou D, Zhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol. 2008;42(14):5137-5143. DOI: 10.1021/es8002684.10.1021/es800268418754360
  30. [30] Ardejani FD, Badii K, Yousefi Limaee N, Shafaei SZ, Mirhabibi AR. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. J Hazard Mater. 2008;151:730-737. DOI: 10.1016/j.jhazmat.2007.06.048.10.1016/j.jhazmat.2007.06.04817656016
  31. [31] Agrawal A, Sahu KK, Pandey BD. Removal of zinc from aqueous solutions using sea nodule residue. Colloids Surf A: Phys Eng Aspects. 2004;237(1-3):133-140. DOI: 10.1016/j.colsurfa.2004.01.034.10.1016/j.colsurfa.2004.01.034
  32. [32] Yıldız S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007
  33. [33] Yıldız S. Artificial Neural Network (ANN) methods for modeling of Zn(II) adsorption in batch process. Korean J Chem Eng. 2017;34(9):2423-2434. DOI: 10.1007/s11814-017-0157-3.10.1007/s11814-017-0157-3
  34. [34] Munagapati VS, Kim DS. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Eco Environ Saf. 2017;141:226-234. DOI: 10.1016/j.ecoenv.2017.03.036.10.1016/j.ecoenv.2017.03.03628349874
  35. [35] Anitha T, Senthil Kumar P, Sathish Kumar K, Sriram K, Feroze Ahmed J. Biosorption of lead(II) ions onto nano-sized chitosan particle blended polyvinyl alcohol (PVA): adsorption isotherms, kinetics and equilibrium studies. Desalin Water Treat. 2016;57:13711-13721. DOI: 10.1080/19443994.2015.1061951.10.1080/19443994.2015.1061951
  36. [36] Gautama SB, Vaishyab RC, Devnania GL, Mathurc AK. Adsorption of As(III) from aqueous solutions by iron-impregnated quartz, lignite, and silica sand: kinetic study and equilibrium isotherm analysis. Desalin Water Treat. 2014;52:3178-3190. DOI: 10.1080/19443994.2013.797182.10.1080/19443994.2013.797182
  37. [37] Yang S, Li J, Lu Y, Chen Y, Wang X. Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature. Appl Radiat Isot. 2009;67:1600-1608. DOI: 10.1016/j.apradiso.2009.03.11810.1016/j.apradiso.2009.03.11819427793
  38. [38] Liu ZR, Zhou SQ. Adsorption of copper and nickel on Na-bentonite. Process Saf Environ Prot. 2010;88:62-66.10.1016/j.psep.2009.09.001
  39. [39] Song X, Wang S, Chen L, Zhang M, Dong Y. Effect of pH, ionic strength and temperature on the sorption of radionickel on Na-montmorillonite. Appl Radiat Isot. 2009;67:1007-1012. DOI: 10.1016/j.apradiso.2009.02.085.10.1016/j.apradiso.2009.02.08519328707
  40. [40] Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci. 2008;38:227-236. DOI: 10.1016/j.clay.2007.04.002.10.1016/j.clay.2007.04.002
  41. [41] Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J Hazard Mater. 2010;177:362-371. DOI: 10.1016/j.jhazmat.2009.12.040.10.1016/j.jhazmat.2009.12.04020042281
  42. [42] Paul ML, Samuel J, Chandrasekaran N, Mukherjee A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem Eng J. 2012;187:104-113. DOI: 10.1016/j.cej.2012.01.106.10.1016/j.cej.2012.01.106
  43. [43] Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH. Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. J Molecular Liquids. 2016;224:832-841. DOI: 10.1016/j.molliq.2016.10.059.10.1016/j.molliq.2016.10.059
  44. [44] Daneshvar E, Kousha M, Sohrabi MS, Khataee A, Converti A. Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: Isotherm, kinetic and thermodynamic studies. Chem Eng J. 2012;195-196:297-306. DOI: 10.1016/j.cej.2012.04.074.10.1016/j.cej.2012.04.074
  45. [45] Saini AS, Melo JS. Biosorption of uranium by melanin: Kinetic, equilibrium and thermodynamic studies. Bioresour Technol. 2013;149:155-162. DOI: 10.1016/j.biortech.2013.09.034.10.1016/j.biortech.2013.09.034
  46. [46] Zhiwei N, Qiaohui F, Wenhua W, Junzheng X, Lei C, Wangsuo W. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot. 2009;67: 1582-1590. DOI: 10.1016/j.apradiso.2009.03.113.10.1016/j.apradiso.2009.03.113
  47. [47] Argun ME, Dursun Ş, Özdemir C, Karataş M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J Hazard Mater. 2007;141(1):77-85. DOI: 10.1016/j.jhazmat.2006.06.09510.1016/j.jhazmat.2006.06.095
  48. [48] Lagergren S. About the theory of so called adsorption of soluble substances. Ksver Veterskapsakad Handl. 1898:24, 16.
  49. [49] Ho YS, McKay G. Pseudo-second-order model for sorption processes. Process Biochem. 1999;34:451-465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5
  50. [50] Ilyas M, Khan N, Sultana Q. Thermodynamic and kinetic studies of chromium(VI) adsorption by sawdust activated carbon. J Chem Soc Pak. 2014;36(6):1003-1012.
  51. [51] Namasivayam C, Kavitha D. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon. J Hazard Mater. 2003;98:257-274. DOI: 10.1016/S0304-3894(03)00006-2.1262879210.1016/S0304-3894(03)00006-2
  52. [52] Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, et al. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive red 120 dye from aqueous effluents. J Hazard Mater. 2012;241-242:146-153. DOI: 10.1016/j.jhazmat.2012.09.026.10.1016/j.jhazmat.2012.09.02623040660
  53. [53] Namasivayam C, Sureshkumar MV. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour Technol. 2008;99(7):2218-2225. DOI: 10.1016/j.biortech.2007.05.023.10.1016/j.biortech.2007.05.02317601729
  54. [54] Ijagbemi CO, Baek MH, Kim DS. Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies. J Hazard Mater. 2010;174:746-755. DOI: 10.1016/j.jhazmat.2009.09.115.10.1016/j.jhazmat.2009.09.11519833431
  55. [55] Katsou E, Malamis S, Haralambous KJ, Loizidou M. Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater. J Membr Sci. 2010;360:234-249. DOI: 10.1016/j.memsci.2010.05.020.10.1016/j.memsci.2010.05.020
  56. [56] Zou W, Han R, Chen Z. Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids Surf. A: Physicochem Eng Asp. 2006;279:238-246. DOI: 10.1016/j.colsurfa.2006.01.008.10.1016/j.colsurfa.2006.01.008
  57. [57] Vieira MGA, Almeida Neto AF, Gimenes ML, da Silva MGC. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J Hazard Mater. 2010;177:362-371. DOI: 10.1016/j.jhazmat.2009.12.040.10.1016/j.jhazmat.2009.12.040
  58. [58] Wierzba S, Rajfur M, Nabrdalik M, Klos A. The application of electroanalytical methods to determine affinity series of metal cations for functional biosorbent groups. J Elect Chem. 2018;809:8-13. DOI: 10.1016/j.jelechem.2017.12.037.10.1016/j.jelechem.2017.12.037
  59. [59] Keane MA. The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers. Colloids Surf. A: Physicochem Eng Asp. 1998;138:11-20. DOI: 10.1016/S0927-7757(97)00078-2.10.1016/S0927-7757(97)00078-2
  60. [60] Inglezakis VJ, Zorpas AA, Loizidou MD, Grigoropoulou HP. The effect of competitive cations and anions on ion exchange of heavy metals. Sep Purif Technol. 2005;46:202-207. DOI: 10.1016/j.seppur.2005.05.008.10.1016/j.seppur.2005.05.008
  61. [61] Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci. 2008;38:227-236. DOI: 10.1016/j.clay.2007.04.002.10.1016/j.clay.2007.04.002
  62. [62] Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186(1):458-465. DOI: 10.1016/j.jhazmat.2010.11.029.10.1016/j.jhazmat.2010.11.02921130566
  63. [63] Mckay G, Blair HS, Gardner JR. Adsorption of dyes on chitin. I. Equilibrium studies. J App Polymer Sci. 1982;27(8):3043-3057. DOI: 10.1002/app.1982.070270827.10.1002/app.1982.070270827
  64. [64] Abd El-Latif M, Elkady M. Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination. 2010;255:21-43. DOI: 10.1016/j.desal.2010.01.020.10.1016/j.desal.2010.01.020
  65. [65] Yang CH. Statistical mechanical study on the Freundlich isotherm equation. J Colloid Inter Sci. 1998;208:379-387. DOI: 10.1006/jcis.1998.5843.10.1006/jcis.1998.58439845681
  66. [66] Ali RM, Hamad HA, Hussein MM, Malash GH. Potential of using green adsorbent of heavy metal removal fromaqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng. 2016;91:317-332. DOI: 10.1016/j.ecoleng.2016.03.015.10.1016/j.ecoleng.2016.03.015
  67. [67] Ostroski IC, Barros MASD, Silva EA, Dantas JH, Arroyo PA, Lima OCMA. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. J Hazard Mater. 2009;161:1404-1412. DOI: 10.1016/j.jhazmat.2008.04.111.10.1016/j.jhazmat.2008.04.111
  68. [68] Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Inter Sci. 2006;304:21-28. DOI: 10.1016/j.jcis.2006.07.068.10.1016/j.jcis.2006.07.068
  69. [69] Liu Y, Liu YJ. Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol. 2008;61:229-242. DOI: 10.1016/j.seppur.2007.10.002.10.1016/j.seppur.2007.10.002
  70. [70] Hasany SM, Chaudhary MH. Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution. App Radiat Isot. 1996;47:467-471. DOI: 10.1016/0969-8043(95)00310-X.10.1016/0969-8043(95)00310-X
  71. [71] Onyang MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Inter Sci. 2004;279:341-350. DOI: 10.1016/j.jcis.2004.06.038.10.1016/j.jcis.2004.06.03815464797
  72. [72] Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J Hazard Mater. 2009;162:616-645. DOI: 10.1016/j.jhazmat.2008.06.042.10.1016/j.jhazmat.2008.06.04218656309
  73. [73] Winzor DJ, Jackson CM. Interpretation of the temperature dependence of equilibrium and rate constants. J Molec Recog. 2006;19(5):389-407. DOI: 10.1002/jmr.799.10.1002/jmr.79916897812
  74. [74] Anastasia V, Penkova SFA, Acquah MP, Sokolova ME, Dmitrenko AMT. Polyvinyl alcohol membranes modified by low-hydroxylated fullerenol C60(OH)12. J Membrane Sci. 2015;491:22-27. DOI: 10.1016/j.memsci.2015.05.011.10.1016/j.memsci.2015.05.011
  75. [75] Ai T, Jiang XJ, Yu HM, Xu HB, Pan DW, Liu QY. Equilibrium, kinetic and mechanism studies on the biosorption of Cu2+ and Ni2+ by sulfur-modified bamboo powder. Korean J Chem Eng. 2015;32:342-349.10.1007/s11814-014-0227-8
  76. [76] Gupta SS, Bhattacharyya KG. Adsorption of Ni(II) on clays. J Colloid Inter Sci. 2006;295:21-32. DOI: 10.1016/j.jcis.2005.07.073.10.1016/j.jcis.2005.07.07316125186
  77. [77] Moreno-Piraján JC, Garcia-Cuello VS, Giraldo L. The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells. Adsorption. 2011;17:505-514. DOI: 10.1007/s10450-010-9311-5.10.1007/s10450-010-9311-5
  78. [78] Osman HE, Badwy RK, Ahmad HF. Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol. 2010;2:51-62.
  79. [79] Rozaini CA, Jain K, Oo CW, Tan KW, Tan LS, Azraa A, et al. Optimization of nickel and copper ions removal by modified mangrove barks. Int J Chem Eng Appl. 2010;1(1):84-89.10.7763/IJCEA.2010.V1.14
  80. [80] Tabaraki R, Nateghi A. Multimetal adsorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol Eng. 2014;71:197-205. DOI: 10.1016/j.ecoleng.2014.07.031.10.1016/j.ecoleng.2014.07.031
  81. [81] Álvarez-Ayuso E, García-Sánchez A, Querol X. Purification of metal electroplating waste waters using zeolites. Water Res. 2003;37:4855-4862. DOI: 10.1016/j.watres.2003.08.009.10.1016/j.watres.2003.08.00914604631
  82. [82] Bhattacharyya KG, Gupta SS. Uptake of Ni(II) ions from aqueous solution by kaolinite and montmorillonite: influence of acid activation of the clays. Sep Sci Technol. 2008;43:3221-3250. DOI: 10.1080/01496390802219638.10.1080/01496390802219638
  83. [83] Bhattacharyya KG, Gupta SS. Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chem Eng J. 2008;136:1-13. DOI: 10.1016/j.cej.2007.03.005.10.1016/j.cej.2007.03.005
  84. [84] Blais JF, Shen S, Meunier N, Tyagi R.D. Comparison of natural adsorbents for metal removal from acidic effluent. Environ Technol. 2003;24:205-215. DOI: 10.1080/09593330309385552.10.1080/095933303093855521266679012666790
  85. [85] Hui KS, Chao CYH, Kot SC. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater. 2005;127:89-101. DOI: 10.1016/j.jhazmat.2005.06.027.10.1016/j.jhazmat.2005.06.02716076523
DOI: https://doi.org/10.1515/eces-2018-0030 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 431 - 456
Published on: Oct 23, 2018
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Sayiter Yildiz, Selahattin Sevinç, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.