Have a personal or library account? Click to login
Effect of Nanoaquacitrates on Physiological Parameters of Fodder Galega Infected with Phytoplasma Cover

Effect of Nanoaquacitrates on Physiological Parameters of Fodder Galega Infected with Phytoplasma

Open Access
|Apr 2018

References

  1. [1] Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131-139. DOI: 10.1016/j.scitotenv.2015.01.104.10.1016/j.scitotenv.2015.01.10425659311
  2. [2] Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep (Amst). 2017;15:1-23. DOI: 10.1016/j.btre.2017.03.002.10.1016/j.btre.2017.03.002545408628603692
  3. [3] Taran NYu, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett. 2014;9(1):289. DOI: 10.1186/1556-276X-9-289.10.1186/1556-276X-9-289408523025024677
  4. [4] Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem FV, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Experiment Bot. 2010;61(15):4197-4220. DOI: 10.1093/jxb/erq282.10.1093/jxb/erq28220876333
  5. [5] Tanase C, Popa V. Peroxidase, superoxide-dismutase and catalase activity in corn plants developed under the influence of polyphenolic compounds and deuterium depleted water. A A I Cuza Univ, Sect IIa Genet Mol Biol. 2014;15(1):7-12. http://www.gbm.bio.uaic.ro/index.php/gbm/article/view/1098.
  6. [6] Bakalova S, Nikolova A, Nedeva D. Isoenzyme profiles of peroxidase, catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds. Bulg J Plant Physiol. 2004;30(1-2):64-77. https://journals4free.com/link.jsp?l=16815924.
  7. [7] Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8(4):e23681. DOI: 10.4161/psb.23681.10.4161/psb.23681703028223425848
  8. [8] Soto P, Gaete H, Hidalgo ME Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat Am J Aquat Res. 2011;39(2):280-285. DOI: 10.3856/vol39-issue2-fulltext-9.10.3856/vol39-issue2-fulltext-9
  9. [9] Azooz MM, Abou-Elhamd MF, Al-Fredan MA. Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Aust J Crop Sci. 2012;6(4):688-694. https://www.researchgate.net/publication/231168321_Biphasic_effect_of_copper_on_growth_proline_lipid_peroxidation_and_antioxidant_enzyme_activities_of_wheat_Triticum_aestivum_cv_Hasaawi_at_early_growing_stage.
  10. [10] Luhova L, Lebeda A, Hedererova, Pec P. Activities of amino oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environ. 2003;49(4):151-157. http://www.agriculturejournals.cz/publicFiles/52843.pdf.10.17221/4106-PSE
  11. [11] Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics. 2012;5(2):60-67. http://www.pomics.com/sohrabi_5_2_2012_60_67.pdf.
  12. [12] Stratu A, Olteanu Z, Peptanariu M, Zamfirache MM The intensity of respiration and the activity of some oxide - reductases in seeds of pastinaca sativa l. treated with ultrasounds. An. ştiinţifice Univ “Al. I. Cuza” Iaşi Tomul LI, s. II a. Biol Vegetală., 2005;51:65-68. http://www.bio.uaic.ro/publicatii/anale_vegetala/issue/2005/09-2005.pdf.
  13. [13] Kyrylenko LV, Patyka VP Fungoid diseases of galega orientalis. Agr Microbiol. 2016;24:52-58. http://www.sg-microb.ho.ua/arh/pdf24/SM24_08EN.pdf.10.35868/1997-3004.24.52-58
  14. [14] Second International Phytoplasmologist Working Group Meeting, Neustadt an der Weinstraße, Germany. 2011;12(15):303. www.bulletinofinsectology.org/.../insectology64-Supplement-2011.pdf
  15. [15] Gulyaeva AB, Tokovenko IP, Korobkova KS, Patyka VP. Status and activity of the photosynthetic apparatus of wheat plants affected phytomycoplasmoses with phytohormones foliar treatment. J Sci World. 2015;10(26):52-56. http://scienceph.ru/d/413259/d/scienceandworldno10(26)octobervol.i_1.pdf.
  16. [16] Henriques FS. Leaf chlorophyll fluorescence: background and fundamentals for plant biologists. Bot Rev. 2009;75:249-270. DOI: 10.10071/s12229-0099035y.10.10071/s12229-0099035y
  17. [17] Misra AN, Misra M, Singh R. Chlorophyll Fluorescence in Plant Biology. Biophysics. In: Misra AN, editor. 2012;7:171-192. http://www.intechopen.com/books/biophysics/chlorophyll-fluorescence-in-plant-biology.
  18. [18] Papageorgiou GC, Govindjee G. Chlorophyll a Fluorescence: A Signature of Photosynthesis. In: Papageorgiou GC, Govindjee G, editors Netherlands: Springer. 2004. http://www.springer.com/gp/book/9781402032172#.10.1007/978-1-4020-3218-9
  19. [19] Shavanova KE, Marchenko OA, Taran MV, Starodub MF. Express estimation of resistant the horse chestnut to the influence cameraria ohridella desch. & dim. By using the method of the induction of chlorophyll fluorescence. Sci. Herald NULES. Ukr Ser: Biol Biotechnol Ecol. 2014;204:1-10. http://journals.nubip.edu.ua/index.php/Biologiya/article/view/4734.
  20. [20] Stirbet A, Govindjee G. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photoch Photobiol. B. 2011;104(1-2):236-257. DOI: 10.1016/j.jphotobiol.2010.12.010.10.1016/j.jphotobiol.2010.12.01021295993
  21. [21] Stirbet A, Govindjee G. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res. 2012;113:15-61. DOI: 10.1007/s11120-012-9754-5.10.1007/s11120-012-9754-522810945
  22. [22] Żurek G, Rybka K, Pogrzeba M, Krzyżak J, Prokopiuk K. Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLoS One. 2014;9(3):e91475. DOI: 10.1371/journal.pone.0091475.10.1371/journal.pone.0091475395469724633293
  23. [23] Adamovics A, Dubrovskis V, Plume I. Galega for fodder and biogas production. 13th Int Conf of Forage Conservation. Nitra, Slovakia. 2008:170-171. https://www.cabdirect.org/cabdirect/abstract/20143176638.
  24. [24] Peiretti PG, Gai F. Chemical composition, nutritive value, fatty acid and amino acid contents of Galega officinalis L. during its growth stage and in regrowth. Anim Feed Sci Tech. 2006;130(3-4):257-267. DOI: 10.1016/j.anifeedsci.2006.01.007.10.1016/j.anifeedsci.2006.01.007
  25. [25] Slepetys J. Influence of cutting and management regimes on Fodder galega for forage and seed production. Agro Research. 2010;8(Sp.Iss.III):711-720. http://agronomy.emu.ee/vol08Spec3/p08s325.pdf.
  26. [26] Slepetys J, Kadziuliene Z, Sarunaite L, Tilvikiene V, Kryzeviciene A. Biomass potential of plants grown for bioenergy production. Proc Intern Sci Conf: Renewable Energy and Energy Efficiency, Growing and Processing Technologies of Energy Crops. 2012;66-72. http://llufb.llu.lv/conference/Renewable_energy_energy_efficiency/Latvia_Univ_Agriculture_REEE_conference_2012.pdf
  27. [27] Patyka V, Buletsa N, Pasichnyk L, Zhitkevich N, Kalinichenko A, Gnatiuk T, et al. Specifics of pesticides effects on the phytopathogenic bacteria. Ecol Chem Eng S 2016;23(2):311-331, DOI: 10.1515/eces-2016-002210.1515/eces-2016-0022
  28. [28] Jeske M, Pańka D, Pala D, Czart A. The effect of different organic fertilization on fungi colonizing plant roots and seeds of fodder galega (Galega orientalis Lam.). 11th Conf Europ Found for Plant Pathology. Kraków: Publ House Krakow Agricult Univ; 2014; 191. http://www.efpp.net/Documents/Krakow/Book%20of%20abstracts_11%20EFPP%20Conference_r.pdf.
  29. [29] Cwalina-Ambroziak B, Koc J. Fungi colonising the aboveground parts of fodder galega (Galega orientalis Lam.) cultivated in pure sowing and mixed with smooth brome-grass (Bromus inermis Leyss.). Acta Agrobot. 2012;58(1):125-133. DOI: 10.5586/aa.2005.018.10.5586/aa.2005.018
  30. [30] Hisox JD, Israelstam RJ. The method for the extraction of chlorofill from leaf tissue whithout maceration. Can J Bot. 1979;57(12):1332-1334. DOI: 10.1139/b79-163.10.1139/b79-163
  31. [31] Horton P, Ruban A. Molecular design of the photosystem II light-harvesting antenna: Photosynthesis and photoprotection. J Exp Bot. 2004;56(411):1-9. DOI: 10.1093/jxb/eri023.10.1093/jxb/eri02315557295
  32. [32] Yamakawa H, van Stokkum IHM, Heber U, Itoh S. Mechanisms of drought-induced dissipation of excitation energy in sun- and shade-adapted drought-tolerant mosses studied by fluorescence yield change and global and target analysis of fluorescence decay kinetics. Photosynth Res. 2017;135(1-3):285-298. DOI: 10.1007/s11120-017-0465-9.10.1007/s11120-017-0465-929151177
  33. [33] Ribeiro RV, Santos MG, Pimentel C, Machado EC, Oliveira RF. Can the critical temperature for photochemical damage in common bean plants be changed after a drought event? Bragantia, Campinas. 2015;74(4):374-378. DOI: 10.1590/1678-4499.0141.10.1590/1678-4499.0141
DOI: https://doi.org/10.1515/eces-2018-0011 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 153 - 168
Published on: Apr 24, 2018
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Hanna Huliaieva, Iryna Tokovenko, Victor Maksin, Volodymyr Kaplunenko, Antonina Kalinichenko, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.