Have a personal or library account? Click to login
Prediction of the Seasonal Changes of the Chloride Concentrations in Urban Water Reservoir Cover

Prediction of the Seasonal Changes of the Chloride Concentrations in Urban Water Reservoir

Open Access
|Jan 2018

References

  1. [1] Hill MJ, Biggs J, Thornhill I, Briers RA, Gledhill DG, White JC, Hassall C. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Change Boil. 2017;23(3):986-999. DOI: 10.1111/gcb.13401.10.1111/gcb.1340127476680
  2. [2] Song K, Winters C, Xenopoulos MA, Marsalek J, Frost PC. Phosphorus cycling in urban aquatic ecosystems: connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry. 2017;132(1-2):203-212. DOI: 10.1007/s10533-017-0293.10.1007/s10533-017-0293
  3. [3] Olguín EJ, Sánchez-Galván G, Melo FJ, Hernández VJ, González-Portela RE. Long-term assessment at field scale of Floating Treatment Wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond. Sci Total Environ. 2017;584:561-571. DOI: 10.1016/j.scitotenv.2017.01.072.10.1016/j.scitotenv.2017.01.07228161041
  4. [4] Angyal Z, Sárközi E, Gombás Á, Kardos L. Effects of land use on chemical water quality of three small streams in Budapest. O Geosci. 2016; 8(1):133-142. DOI: 10.1515/geo-2016-0012.10.1515/geo-2016-0012
  5. [5] Gutchess K, Jin L, Lautz L, Shaw SB, Zhou X, Lu Z. Chloride sources in urban and rural headwater catchments, central New York. Sci Total Environ. 2016; 565:462-472. DOI: 10.1016/j.scitotenv.2016.04.181.10.1016/j.scitotenv.2016.04.18127183460
  6. [6] Corsi SR, De Cicco LA, Lutz MA, Hirsch RM. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci Total Environ. 2015;508:488-497. DOI: 10.1016/j.scitotenv.2014.12.012.10.1016/j.scitotenv.2014.12.01225514764
  7. [7] Thornton JA, Slawski TM, Lin H. Salinization: the ultimate threat to temperate lakes, with particular reference to Southeastern Wisconsin (USA). Chin J Oceanol Limnol. 2015;33(6):1461-1475. DOI: 10.1007/s00343-015-4368-3.10.1007/s00343-015-4368-3
  8. [8] Dojlido J, Best GA. Chemistry of Water and Water Pollution. New York: Ellis Horwood Limited. 1993; 364 pp.
  9. [9] Corsi SR, Graczyk DJ, Geis SW, Booth NL, Richards KD. A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales. Environ Sci Technol. 2010;44(19):7376-7382. DOI: 10.1021/es101333u.10.1021/es101333u294730920806974
  10. [10] Cieśliński R, Piekarz J, Zieliński M. Groundwater supply of lakes: the case of Lake Raduńskie Górne (northern Poland, Kashubian Lake District). Hydrol Sci J. 2016;61(13):2427-2434. DOI: 10.1080/02626667.2015.1112903.10.1080/02626667.2015.1112903
  11. [11] Rhodes AL, Guswa AJ. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA. Sci Total Environ. 2016; 545:525-545. DOI: 10.1016/j.scitotenv.2015.12.060.10.1016/j.scitotenv.2015.12.06026760273
  12. [12] Schweiger AH, Audorff V, Beierkuhnlein C. Salt in the wound: The interfering effect of road salt on acidified forest catchments. Sci Total Environ. 2015; 532:595-604.DOI: 10.1016/j.scitotenv.2015.06.034.10.1016/j.scitotenv.2015.06.03426115338
  13. [13] Sibert RJ, Koretsky CM, Wyman DA. Cultural meromixis: Effects of road salt on the chemical stratification of an urban kettle lake. Chem Geol. 2015; 395:126-137. DOI: 10.1016/j.chemgeo.2014.12.010.10.1016/j.chemgeo.2014.12.010
  14. [14] Novotny EV, Murphy D, Stefan HG. Increase of urban lake salinity by road deicing salt. Sci Total Environ. 2008;406(1):131-144. DOI: 10.1016/j.scitotenv.2008.07.037.10.1016/j.scitotenv.2008.07.03718762321
  15. [15] Vitale SA, Robbins GA, McNaboe LA. Impacts of road salting on water quality in fractured crystalline bedrock. J Environ Qual. 2017; 46(2):288-294. DOI: 10.2134/jeq2016.10.0411.10.2134/jeq2016.10.041128380564
  16. [16] Safi SK, White AK. Short and long-term forecasting using artificial neural networks for stock prices in Palestine: a comparative study. Electron J Appl Statist Anal. 2017;10(1):14-28. DOI: 10.1285/i20705948v10n1p14.10.1285/i20705948v10n1p14
  17. [17] Moghim S, Bras RL. Bias correction of climate modeled temperature and precipitation using artificial neural networks. J Hydrometeorol. 2017. DOI: 10.1175/JHM-D-16-0247.1.10.1175/JHM-D-16-0247.1
  18. [18] Sengorur DEB, Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage. 2009;90(2):1229-1235. DOI: 10.10116/j.jevman.2008.06.004.10.10116/j.jevman.2008.06.004
  19. [19] Dastorani MT, Afkhami H, Sharifidarani H, Dastorani M. Application of ANN and ANFIS models on dryland precipitation prediction (case study: Yazd in Central Iran). J Appl Sci. 2010;10(20):2387-2394. DOI: 10.1007/s10661-009-1012-8.10.1007/s10661-009-1012-819543999
  20. [20] Zhang L, Zhang GX, Li RR. Water quality analysis and prediction using hybrid time series and neural network models. J Agri Sci Tech. 2016;18(4):975-983. http://journals.modares.ac.ir/article_14707_3d8651ca0390d757de18ce6c8528b1a8.pdf.
  21. [21] Mulia IE, Asano T, Tkalich P. Retrieval of missing values in water temperature series using a data-driven model. Ear Sci Inf. 2015;8(4):787-798. DOI: 10.1007/s12145-015-0210-x.10.1007/s12145-015-0210-x
  22. [22] Heddam S, Lamda H, Filali S. Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study. Environ Process. 2016;3(1):153-165. DOI: 10.1007/s40710-016-0129-3.10.1007/s40710-016-0129-3
  23. [23] Li YL, Zhang Q, Werner AD, Yao J. Investigating a complex lake-catchment-river system using artificial neural networks: Poyang Lake (China). Hydrol Res. 2015;46(6):912-928. DOI: 10.2166/nh.2015.150.10.2166/nh.2015.150
  24. [24] Cole JC, Maloney KO, Schmid M, McKenna JE. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River. J Hydrol. 2014;519:588-598. DOI: 10.1016/j.jhydrol.2014.07.058.10.1016/j.jhydrol.2014.07.058
  25. [25] Hadzima-Nyarko M, Rabi A, Šperac M. Implementation of artificial neural networks in modeling the waterair temperature relationship of the River Drava. Water Resour Manage. 2014; 28(5):1379-1394. DOI: 10.1007/s11269-014-0557-7.10.1007/s11269-014-0557-7
  26. [26] Rabi A, Hadzima-Nyarko M, Šperac M. Modelling river temperature from air temperature: case of the River Drava (Croatia). Hydrolo Sci J. 2015; 60(9):1490-1507. DOI: 10.1080/02626667.2014.914215.10.1080/02626667.2014.914215
  27. [27] Fajčíková K, Stehlíková B, Cvečková V, Rapant S. Application of artificial neural network in medical geochemistry. Environ Geochem Health. 2017;39(6):1513-1529. DOI: 10.1007/s10653-017-9944-3.10.1007/s10653-017-9944-328353054
  28. [28] Salami SE, Ehteshami M. Application of artificial neural networks to estimating DO and salinity in San Joaquin River basin. Desal Water Treat. 2016;57(11):4888-4897. DOI: 10.1080/19443994.2014.995713.10.1080/19443994.2014.995713
  29. [29] Zheng F, Wan Y, Song K, Sun D, Hedgepeth M. Reconstructing input for artificial neural networks based on embedding theory and mutual information to simulate soil pore water salinity in tidal floodplain. Water Resource Res. 2016;52:511-532 DOI: 10.1002/2014WR016875.10.1002/2014WR016875
  30. [30] Chen W, Liu W, Huang W, Liu H. Prediction of salinity variations in a tidal estuary using artificial neural network and three-dimensional hydrodynamic models. Comput Water Ener Environ Eng. 2017;6:107-128. DOI: 10.4236/cweee.2017.61009.10.4236/cweee.2017.61009
  31. [31] Rath JS, Hutton PH, Chen L, Roy SB. A hybrid empirical-Bayesian artificial neural network model of salinity in the San Francisco Bay-Delta estuary. Environ Model Soft. 2017;93:193-208. DOI: 10.1016/j.envsoft.2017.03.022.10.1016/j.envsoft.2017.03.022
  32. [32] Dandy G. Use of artificial neural networks to forecast salinity in rivers. Artificial Neural Networks in Water Supply Engineering. ASCE. 2005;107-137.
  33. [33] Poleszczuk G, Miller T, Tokarz M. Ponds Syrenie Stawy in Szczecin - changes of selected water quality chemical indices. Chem Didact Ecol Metrol. 2015;20(1-2):85-96 DOI: 10.1515/cdem-2015-0009.10.1515/cdem-2015-0009
  34. [34] Miller T, Tokarz M, Poleszczuk G. Stream Osowka in Szczecin - chemometric analysis of water quality indices in winter season. Acta Biol. 2014;21:91-104. http://www.wb.usz.edu.pl/attachments/article/657/6-Miller.pdf.
  35. [35] Poleszczuk G, Wawrzyniak W, Miller T, Tokarz M, Gasperowicz A, Adamczyk D. Syrenie Stawy in Szczecin - a comparison of the quality of waters in the winter and spring in 1994-1995, 1999-2000, 2006-2007 and 2014. In: Wawrzyniak W, Zaborowski T, editors. Ecology of Borderlands. Monography. Gorzow Wlkp.-Poznan: IBEN. 2014;122-137. DOI: 10.13140/2.1.2179.2006.10.13140/2.1.2179.2006
  36. [36] Sammel A. Skład chemiczny osadów dennych zbiorników wodnych Syrenie Stawy aglomeracji szczecińskiej i możliwości ich wykorzystania. Inż Środ. 2015; 157(37):53-60.
  37. [37] APHA. Standard methods for the examination of water and wastewater. Washington: American Public Health Association. 2012; 1800pp.
  38. [38] Fahimi F, Yaseen ZM, El-shafie A. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol. 2017;128(3):875-903. DOI: 10.1007/s00704-016-1735-8.10.1007/s00704-016-1735-8
  39. [39] Chen XY, Chau KW, Wang WC. A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting. J Hydroinf. 2015; 17(5):733-744. DOI: 10.2166/hydro.2015.095.10.2166/hydro.2015.095
  40. [40] Yaseen ZM, El-Shafie A, Afan HA, Hameed M, Mohtar WHMW, Hussain A. RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia. Neural Comput Applic. 2016; 27(6):1533-1542. DOI: 10.1007/s00521-015-1952-6.10.1007/s00521-015-1952-6
  41. [41] Yaseen ZM, El-Shafie A, Jaafar O, Afan HA, Sayl KN. Artificial intelligence based models for stream-flow forecasting: 2000-2015. J Hydrology. 2015;530:829-844. DOI: 10.1016/j.jhydrol.2015.10.038.10.1016/j.jhydrol.2015.10.038
  42. [42] Talaee PH. Multilayer perceptron with different training algorithms for streamflow forecasting. Neural Comput Applic. 2014;24(3-4):695-703. DOI: 10.1007/s00521-012-1287-5.10.1007/s00521-012-1287-5
  43. [43] Trichakis IC, Nikolos IK, Karatzas GP. Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response. Hydrol Proces. 2009; 23(20):2956-2969. DOI: 10.1002/hyp.7410.10.1002/hyp.7410
  44. [44] Piotrowski AP, Napiorkowski JJ. A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J Hydrol. 2013;476:97-111. DOI: 10.1016/j.jhydrol.2012.10.019.10.1016/j.jhydrol.2012.10.019
  45. [45] Banhatti AG, Deka PC. Effects of data pre-processing on the prediction accuracy of artificial neural network model in hydrological time series. Urban Hydrol Wat Manag Soc Econ Aspec. 2016;265-275. DOI: 10.1007/978-3-319-40195-9_21.10.1007/978-3-319-40195-9_21
  46. [46] Li X, Maier HR, Zecchin AC. Improved PMI-based input variable selection approach for artificial neural network and other data driven environmental and water resource models. Environ Model Soft. 2015;65:15-29. DOI: 10.1016/j.envsoft.2014.11.028.10.1016/j.envsoft.2014.11.028
  47. [47] Kasiviswanathan, KS, Sudheer KP, He J. Quantification of Prediction Uncertainty in Artificial Neural Network Models. In Artificial Neural Network Modelling Springer International Publishing. 2016;145-159. DOI: 10.1007/978-3-319-28495-8_8.10.1007/978-3-319-28495-8_8
  48. [48] Piotrowski AP, Napiorkowski MJ, Napiorkowski JJ, Osuch M. Comparing various artificial neural network types for water temperature prediction in rivers. J Hydrol. 2015;529:302-315. DOI: 10.1016/j.jhydrol.2015.07.044.10.1016/j.jhydrol.2015.07.044
  49. [49] Antonopoulos VZ, Georgiou PE, Antonopoulos ZV. Dispersion coefficient prediction using empirical models and ANNs. Environ Proces. 2015;2(2):379-394. DOI: 10.1007/s40710-015-0074-610.1007/s40710-015-0074-6
  50. [50] Kashefipour SM, Falconer RA. Longitudinal dispersion coefficients in natural channels. Water Res. 2002; 36(6):1596-1608. DOI: 10.1016/S0043-1354(01)00351-7.10.1016/S0043-1354(01)00351-7
  51. [51] Seo IW, Cheong TS. Predicting longitudinal dispersion coefficient in natural streams. J Hydraulic Eng. 1998;124(1):25-32. DOI: 10.1061/(ASCE)0733-9429(1998)124:1(25).10.1061/(ASCE)0733-9429(1998)124:1(25)
DOI: https://doi.org/10.1515/eces-2017-0039 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 595 - 611
Published on: Jan 19, 2018
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Tymoteusz Miller, Gorzysław Poleszczuk, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.