Have a personal or library account? Click to login
TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water Cover

TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water

Open Access
|Oct 2017

References

  1. [1] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325-47. DOI: 10.1016/j.biotechadv.2010.01.004.10.1016/j.biotechadv.2010.01.004
  2. [2] Hwang S, Jeong S. Electrospun nano composites of poly(vinyl pyrrolidone)/nano-silver for antibacterial materials. J Nanosci Nanotechnol. 2011;11:610-613. DOI: 10.1166/jnn.2011.3243.10.1166/jnn.2011.3243
  3. [3] Deniz AE, Vural HA, Ortaç B, Uyar T. Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett. 2011;65:2941-2943. DOI: 10.1016/j.matlet.2011.06.045.10.1016/j.matlet.2011.06.045
  4. [4] Savva I, Krekos G, Taculescu A, Marinica O, Vekas L, Krasia-Christoforou T. Fabrication and characterization of magnetoresponsive electrospun nanocomposite membranes based on methacrylic random copolymers and magnetite nanoparticles. J Nanomater. 2012;2012:1-9. DOI: 10.1155/2012/578026.10.1155/2012/578026
  5. [5] Padil VVT, Filip J, Suresh KI, Wacławek S, Černík M. Electrospun membrane composed of poly [acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Adv. 2016;6:110288-110300. DOI: 10.1039/C6RA24036D.10.1039/C6RA24036D
  6. [6] Gupta SM, Tripathi M. A review of TiO2 nanoparticles. Chinese Sci Bull. 2011;56:1639-1657. DOI: 10.1007/s11434-011-4476-1.10.1007/s11434-011-4476-1
  7. [7] Han H, Bai R. Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res. 2009;48:2891-2898. DOI: 10.1021/ie801362a.10.1021/ie801362a
  8. [8] Hamdi A, Ferreira DP, Ferraria AM, Conceição DS, Vieira Ferreira LF, Carapeto AP, et al. TiO2-CdS nanocomposites: Effect of CdS oxidation on the photocatalytic activity. J Nanomater. 2016;2016:1-11. DOI: 10.1155/2016/6581691.10.1155/2016/6581691
  9. [9] García-Mendoza C, Oros-Ruiz S, Hernández-Gordillo A, López R, Jácome-Acatitla G, Calderón HA, et al. Suitable preparation of Bi2S3 nanorods-TiO2 heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition. J Chem Technol Biotechnol. 2016;91:2198-2204. DOI: 10.1002/jctb.4979.10.1002/jctb.4979
  10. [10] Baia L, Orbán E, Fodor S, Hampel B, Kedves EZ, Saszet K, et al. Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge. Mater Sci Semicond Process. 2016;42:66-71. DOI: 10.1016/j.mssp.2015.08.042.10.1016/j.mssp.2015.08.042
  11. [11] Han H, Riboni F, Karlicky F, Kment S, Goswami A, Sudhagar P, et al. α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale. 2017;9:134-142. DOI: 10.1039/C6NR06908H.10.1039/606908
  12. [12] Singh N, Pandey V, Singh N, Malik MM, Haque FZ. Application of TiO2/SnO2 nanoparticles in photoluminescence based fast ammonia gas sensing. J Opt. 2017;46:199-203. DOI: 10.1007/s12596-017-0404-3.10.1007/s12596-017-0404-3
  13. [13] Li N, Li Y, Li W, Ji S, Jin P. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: microstructure, growth mechanism, and improved photochromic property. J Phys Chem C. 2016;120:3341-3349. DOI: 10.1021/acs.jpcc.5b10752.10.1021/acs.jpcc.5b10752
  14. [14] Jampílek J, Král’ová K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S. 2015;22:321-361. DOI: 10.1515/eces-2015-0018.10.1515/eces-2015-0018
  15. [15] Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H. TiO2 based photocatalytic membranes: A review. J Memb Sci. 2014;472:167-184. DOI: 10.1016/j.memsci.2014.08.016.10.1016/j.memsci.2014.08.016
  16. [16] Bet-moushoul E, Mansourpanah Y, Farhadi K, Tabatabaei M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem Eng J. 2016;283:29-46. DOI: 10.1016/j.cej.2015.06.124.10.1016/j.cej.2015.06.124
  17. [17] Michałowicz J. Bisphenol A - Sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37:738-758. DOI: 10.1016/j.etap.2014.02.003.10.1016/j.etap.2014.02.003
  18. [18] Chronopoulou L, Palocci C, Valentino F, Pettiti I, Wacławek S, Černík M, et al. Stabilization of iron (micro)particles with polyhydroxybutyrate for in situ remediation applications. Appl Sci. 2016;6:417. DOI: 10.3390/app6120417.10.3390/app6120417
  19. [19] Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J Mol Liq. 2016;214:175-191. DOI: 10.1016/j.molliq.2015.12.013.10.1016/j.molliq.2015.12.013
  20. [20] Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2015;529:190-194. DOI: 10.1038/nature16185.10.1038/16185
  21. [21] Singha AS, Guleria A. Use of low cost cellulosic biopolymer based adsorbent for the removal of toxic metal ions from the aqueous solution. Sep Sci Technol. 2014;49:2557-2567. DOI: 10.1080/01496395.2014.929146.10.1080/01496395.2014.929146
  22. [22] Jeon C, Park JY, Yoo YJ. Novel immobilization of alginic acid for heavy metal removal. Biochem Eng J. 2002;11:159-166. DOI: 10.1016/S1369-703X(02)00020-7.10.1016/S1369-703X(02)00020-7
  23. [23] Thakur S, Kumari S, Dogra P, Chauhan GS. A new guar gum-based adsorbent for the removal of Hg(II) from its aqueous solutions. Carbohydr Polym. 2014;106:276-282. DOI: 10.1016/j.carbpol.2014.02.041.10.1016/j.carbpol.2014.02.041
  24. [24] Wacławek S, Chronopoulou L, Petrangeli Papini M, Vinod VTP, Palocci C, Kupčík J, et al. Enhancement of stability and reactivity of nanosized zero-valent iron with polyhydroxybutyrate. Desalin Water Treat. 2017;69. DOI: 10.5004/dwt.2017.0704.10.5004/dwt.2017.0704
  25. [25] Padil VVT, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, et al. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: Characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 2017;7:13997-14009. DOI: 10.1039/C7RA00464H.10.1039/700464
  26. [26] Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 2017;330:44-62. DOI: 10.1016/j.cej.2017.07.132.10.1016/j.cej.2017.07.132
  27. [27] Wacławek S, Antoš V, Hrabák P, Černík M. Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalin Water Treat. 2016;57:26274-26279. DOI: 10.1080/19443994.2015.1119757.10.1080/19443994.2015.1119757
  28. [28] Yaqoob S, Ullah F, Mehmood S, Mahmood T, Ullah M, Khattak A, et al. Effect of waste water treated with TiO2 nanoparticles on early seedling growth of Zea mays L. J Water Reuse Desalin. 2017. DOI: 10.2166/wrd.2017.163.10.2166/wrd.2017.163
  29. [29] Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE. Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation. 2013;85:483-490. DOI: 10.1016/j.ibiod.2013.03.012.10.1016/j.ibiod.2013.03.012
  30. [30] Khuzwayo Z, Chirwa EMN. Analysis of catalyst photo-oxidation selectivity in the degradation of polyorganochlorinated pollutants in batch systems using UV and UV/TiO2. South African J Chem Eng. 2017;23:17-25. DOI: 10.1016/j.sajce.2016.12.002.10.1016/j.sajce.2016.12.002
  31. [31] Padil VVT, Senan C, Wacławek S, Černík M. Electrospun fibers based on Arabic, karaya and kondagogu gums. Int J Biol Macromol. 2016;91:299-309. DOI: 10.1016/j.ijbiomac.2016.05.064.10.1016/j.ijbiomac.2016.05.064
  32. [32] Nasikhudin, Ismaya EP, Diantoro M, Kusumaatmaja A, Triyana K. Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. IOP Conf. Ser. Mater. Sci. Eng. vol. 202, 2017. DOI: 10.1088/1757-899X/202/1/012011.10.1088/1757-899X/202/1/012011
  33. [33] Li J-H, Xu Y-Y, Zhu L-P, Wang J-H, Du C-H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Memb Sci. 2009;326:659-666. DOI: 10.1016/j.memsci.2008.10.049.10.1016/j.memsci.2008.10.049
  34. [34] Kovacic M, Juretic Perisic D, Biosic M, Kusic H, Babic S, Loncaric Bozic A. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. Environ Sci Pollut Res. 2016;23:14908-14917. DOI: 10.1007/s11356-016-6580-x.10.1007/s11356-016-6580-x
  35. [35] Bodzek M, Rajca M. Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds. Ecol Chem Eng S. 2012;19:489-512. DOI: 10.2478/v10216-011-0036-5.10.2478/v10216-011-0036-5
  36. [36] Bohdziewicz J, Kudlek E, Dudziak M. Influence of the catalyst type (TiO2 and ZnO) on the photocatalytic oxidation of pharmaceuticals in the aquatic environment. Desalin Water Treat. 2016;57:1552-1563. DOI: 10.1080/19443994.2014.988411.10.1080/19443994.2014.988411
  37. [37] Wang R, Ren D, Xia S, Zhang Y, Zhao J. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater. 2009;169:926-932. DOI: 10.1016/j.jhazmat.2009.04.036.10.1016/j.jhazmat.2009.04.036
  38. [38] Chong MN, Jin B. Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J Hazard Mater. 2012;199-200:135-142. DOI: 10.1016/j.jhazmat.2011.10.067.10.1016/j.jhazmat.2011.10.067
DOI: https://doi.org/10.1515/eces-2017-0028 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 417 - 429
Published on: Oct 11, 2017
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Edyta Kudlek, Daniele Silvestri, Stanisław Wacławek, Vinod V.T. Padil, Martin Stuchlík, Lukáš Voleský, Pavel Kejzlar, Miroslav Černík, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.