Have a personal or library account? Click to login
Voltammetric Determination of Aclonifen at a Silver Amalgam Electrode in Drinking and River Water Cover

Voltammetric Determination of Aclonifen at a Silver Amalgam Electrode in Drinking and River Water

By: Vít Novotný and  Jiří Barek  
Open Access
|Jul 2017

References

  1. [1] Cobucci T, Prates HT, Falcão CLM, Rezende MMV. Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Sci. 1998;46(2):258-263. http://www.jstor.org/stable/4045945.10.1017/S0043174500090500
  2. [2] Drewes M, Tietjen K, Sparks TC. High-Throughput Screening in Agrochemical Research. In: Jeschke P, Krämer W, Schirmer U, Witschel M, editors. Modern Methods in Crop Protection Research. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.; 2013.10.1002/9783527655908.ch1
  3. [3] Kilinc Ö, Reynaud S, Perez L, Tissut M, Ravanel P. Physiological and biochemical modes of action of the diphenylether aclonifen. Pestic Biochem Physiol. 2009;93:65-71. DOI: 10.1016/j.pestbp.2008.11.008.10.1016/j.pestbp.2008.11.008
  4. [4] Scrano L, Bufo SA, D’Auria M, Meallier P, Behechti A, Shramm KW. Photochemistry and photoinduced toxicity of acifluorfen, a diphenyl-ether herbicide. J Environ Qual. 2002;31:268-274. DOI: 10.2134/jeq2002.0268.10.2134/jeq2002.0268
  5. [5] Teshima R, Nakamura R, Nakajima O, Hachisuka A, Sawada J-I. Effect of two nitrogenous diphenyl ether pesticides on mast cell activation. Toxicol Lett. 2004;150:277-283. DOI: 10.1016/j.toxlet.2004.02.001.10.1016/j.toxlet.2004.02.001
  6. [6] Francis BM, Metcalf RL, Lewis PA, Chernoff N. Maternal and developmental toxicity of halogenated 4'-nitrodiphenyl ethers in mice. Teratology. 1999;59:69-80. DOI: 10.1002/(SICI)1096-9926(199902)59: 2<69::AID-TERA1>3.0.CO;2-I.
  7. [7] Laganà A, Fago G, Fasciani L, Marino A, Mosso M. Determination of diphenyl-ether herbicides and metabolites in natural waters using high-performance liquid chromatography with diode array tandem mass spectrometric detection. Anal Chim Acta. 2000;414:79-94. DOI: 10.1016/S0003-2670(00)00813-8.10.1016/S0003-2670(00)00813-8
  8. [8] Sheu H-L, Sung Y-H, Melwanki MB, Huang S-D. Determination of diphenylether herbicides in water samples by solid-phase microextraction coupled to liquid chromatography. J Sep Sci. 2006;29:2647-2652. DOI: 10.1002/jssc.200600155.10.1002/jssc.20060015517313105
  9. [9] Pang G-F, Liu Y-M, Fan C-L, Zhang J-J, Cao Y-Z, Li X-M, et al. Simultaneous determination of 405 pesticide residues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry or liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2006;384:1366-1408. DOI: 10.1007/s00216-005-0237-9.10.1007/s00216-005-0237-916520938
  10. [10] Perreau F, Einhorn J. Determination of frequently detected herbicides in water by solid-phase microextraction and gas chromatography coupled to ion-trap tandem mass spectrometry. Anal Bioanal Chem. 2006;386:1449-1456. DOI: 10.1007/s00216-006-0693-x.10.1007/s00216-006-0693-x16937091
  11. [11] Sagratini G, Ametisti M, Canella M, Cristalli G, Francoletti E, Giardina D, et al. Well water in central Italy: Analysis of herbicide residues as potential pollutants of untreated crops. Fresenius Environ Bull. 2007;16:973-979.
  12. [12] Cervera MI, Portoles T, Lopez FJ, Beltran J, Hernandez F. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography/quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem. 2014;406(27):6843-6855. DOI: 10.1007/s00216-014-7853-1.10.1007/s00216-014-7853-124828980
  13. [13] Fillatre Y, Rondeau D, Daguin A, Jadas-Hecart A, Communal P-Y. Multiresidue determination of 256 pesticides in lavandin essential oil by LC/ESI/sSRM: advantages and drawbacks of a sampling method involving evaporation under nitrogen. Anal Bioanal Chem. 2013;406(5):1541-1550. DOI: 10.1007/s00216-013-7553-210.1007/s00216-013-7553-224366405
  14. [14] Liang HC, Bilon N, Hay MT. Analytical methods for pesticide residues in the water environment. Water Environ Res. 2014;87(10):1923-1937. DOI: 10.2175/106143015X14338845156542.10.2175/106143015X1433884515654226420110
  15. [15] Cai J-R, Zhou L-N, Han E. A sensitive amperometric acetylcholine biosensor based on carbon nanosphere and acetylcholinesterase modified electrode for detection of pesticide residues. Anal Sci. 2014;30(6):669-673. DOI: 10.2116/analsci.30.669.10.2116/analsci.30.66924919672
  16. [16] Li C-P, Fan S, Yin C, Zhang N, Du S, Zhao H. Carboxylic silica nanosheet-platinum nanoparticle modified glass carbon electrodes for pesticide detection. Anal Methods. 2014;6(6):1914-1921. DOI: 10.1039/C3AY42305K.10.1039/C3AY42305K
  17. [17] Songa EA, Somerset VS, Waryo T, Baker PGL, Iwuoha EI. Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples (Report). Pure Appl Chem. 2009;81(1):123-139. DOI: 10.1351/PAC-CON-08-01-15.10.1351/PAC-CON-08-01-15
  18. [18] Barek J, Cabalkova D, Fischer J, Navratil T, Peckova K, Yosypchuk B. Voltammetric determination of the herbicide Bifenox in drinking and river water using a silver solid amalgam electrode. Environ Chem Lett. 2011;9(1):83-86. DOI: 10.1007/s10311-009-0250-x.10.1007/s10311-009-0250-x
  19. [19] Brycht M, Skrzypek S, Nosal-Wiercilska A, Smarzewska S, Guziejewski D, Ciesielski W, et al. The new application of renewable silver amalgam film electrode for the electrochemical reduction of nitrile, cyazofamid, and its voltammetric determination in the real samples and in a commercial formulation. Electrochim Acta. 2014;134:302-308. DOI: 10.1016/j.electacta.2014.04.143.10.1016/j.electacta.2014.04.143
  20. [20] Smarzewska S, Metelka R, Guziejewski D, Skowron M, Skrzypek S, Brycht M, et al. Voltammetric behaviour and quantitative determination of pesticide iminoctadine. Anal Methods. 2014;6(6):1884-1889. DOI: 10.1039/C3AY42038H.10.1039/c3ay42038h
  21. [21] Skrzypek S, Smarzewska S, Ciesielski W. Determination of Blasticidin S in spiked rice using SW voltammetry with a renewable silver amalgam film electrode. Electroanalysis. 2012;24(5):1153-1159. DOI: 10.1002/elan.201100715.10.1002/elan.201100715
  22. [22] Inam R, Cakmak Z. A simple square wave voltammetric method for the determination of Aclonifen herbicide. Anal Methods. 2013;5(13):3314-3320. DOI: 10.1039/C3AY40333E10.1039/c3ay40333e
  23. [23] Ni Y, Wang L, Kokot S. Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics. J Environ Sci Health. Part B. Pesticides Food Contamin Agricult Wastes. 2011;46(4):328-335. DOI: 10.1080/03601234.2011.559888.10.1080/03601234.2011.55988821512931
  24. [24] Silva TA, Figueiredo LCS, Vicentini FC, Deroco PB, Rocha-Filho RC, Fatibello-Filho O. Square-wave voltammetric determination of the herbicide bentazon using a cathodically pretreated boron-doped diamond electrode. Chem Sensors. 2014;4:1-6. http://www.cognizure.com/abstract.aspx?p=200638412.
  25. [25] Yosypchuk B, Barek J. Analytical applications of solid and paste amalgam electrodes. Crit Rev Anal Chem. 2009;39:189-203. DOI: 10.1080/10408340903011838.10.1080/10408340903011838
  26. [26] Fischer J, Dejmkova H, Barek J. Electrochemistry of pesticides and its analytical applications. Curr Org Chem. 2011;15:2923-2935. DOI: 10.2174/138527211798357146.10.2174/138527211798357146
  27. [27] Gajdar J, Horakova E, Barek J, Fischer J, Vyskočil V. Recent applications of mercury electrodes for monitoring of pesticides: A critical review. Electroanalysis. 2016;28:2659-2671. DOI: 10.1002/elan.201600239.10.1002/elan.201600239
  28. [28] Yosypchuk B, Novotný L. Electrodes of nontoxic solid amalgams for electrochemical measurements. Electroanalysis. 2002;14:1733-1738. DOI: 10.1002/elan.200290018.10.1002/elan.200290018
  29. [29] Bordin DCM, Alves MNR, Cabrices OG, Campos EGd, Martinis BSD. A rapid assay for the simultaneous determination of nicotine, cocaine and metabolites in meconium using disposable pipette extraction and gas chromatography/mass spectrometry (GC/MS). J Anal Toxicol. 2013;38(1):31-38. DOI: 10.1093/jat/bkt092.10.1093/jat/bkt09224272386
DOI: https://doi.org/10.1515/eces-2017-0019 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 277 - 284
Published on: Jul 13, 2017
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Vít Novotný, Jiří Barek, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.