Have a personal or library account? Click to login
Kinetic and Isotherm Analysis of Cu(II) Adsorption onto Almond Shell (Prunus Dulcis) Cover

Kinetic and Isotherm Analysis of Cu(II) Adsorption onto Almond Shell (Prunus Dulcis)

By: Sayiter Yildiz  
Open Access
|Apr 2017

References

  1. [1] Zhou B, Wang Z, Shen D, Shen F, Wu C, Xiao R. Low cost earthworm manure-derived carbon material for the adsorption of Cu2+ from aqueous solution: Impact of pyrolysis temperature. Ecol Eng. 2017;98:189-195. DOI: 10.1016/j.ecoleng.2016.10.061.10.1016/j.ecoleng.2016.10.061
  2. [2] Suguna M, Reddy AS, Kumar NS, Krishnaiah A. Biosorption of manganese(II) ions from aqueous solution by glutaraldehyde cross-linked chitosan beads: Equilibrium and kinetic studies. Adsorp Sci Technol. 2010;28:213-219. DOI: 10.1260/0263-6174.28.3.213.10.1260/0263-6174.28.3.213
  3. [3] Feng NC, Guo XY, Liang S. Adsorption study of copper(II) by chemically modified orange peel. J Hazard Mater. 2009;164:1286-1292. DOI: 10.1016/j.jhazmat.2008.09.096.10.1016/j.jhazmat.2008.09.096
  4. [4] Anırudhan TS, Rajı C, Shubha KP. Immobilization of heavy metals from aqueous solutions using polyacrylamide grafted hydrous tin(IV) oxide gel having carboxylate functional groups. Water Res. 2001;35:300-310. DOI: 10.1016/S0043-1354(00)00234-7.10.1016/S0043-1354(00)00234-7
  5. [5] Kocadagıstan E, Bascı N, Kocadagıstan B. Biosorption of copper(II) from aqueous solutions by wheat shell. Desalination. 2004;164:135-140. DOI: 10.1016/S0011-9164(04)00172-9.10.1016/S0011-9164(04)00172-9
  6. [6] Hashemian S, Mirshamsi M. Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution. J Industrial Eng Chem. 2012;18(6):2010-2015. DOI: 10.1016/j.jiec.2012.05.020.10.1016/j.jiec.2012.05.020
  7. [7] Yu H, Pang J, Ai T, Liu L. Biosorption of Cu2+, Co2+ and Ni2+ from aqueous solution by modified corn silk: Equilibrium, kinetics, and thermodynamic studies. J Taiwan Inst Chem Eng. 2016;62:21-30. DOI: 10.1016/j.jtice.2016.01.026.10.1016/j.jtice.2016.01.026
  8. [8] Ding Y, Jing D, Gong H, Zhou L, Yang X. Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresour Technol. 2012;114:20-25. DOI: 10.1016/j.biortech.2012.01.110.10.1016/j.biortech.2012.01.11022445266
  9. [9] Sundaram MN, Sivakumar S. Use of indian almond shell waste and groundnut shell waste for the removal of azure a dye from aqueous solution. J Chem Pharm Res. 2012;4(4):2047-2054. http://www.jocpr.com/articles/use-of-indian-almond-shell-waste-and-groundnut-shell-waste-for-the-removal-of-azure-a-dye-from-aqueoussolution.pdf.
  10. [10] Abdessalem O, Mourad B, Najwa A. Preparation, modification and industrial application of activated carbon from almond shell. J Ind Eng Chem. 2013;19(6):2092-2099. DOI: 10.1016/j.jiec.2013.03.025.10.1016/j.jiec.2013.03.025
  11. [11] Çekim M, Yıldız S, Dere T. Biosorption of copper from synthetic waters by using tobacco leaf: equilibrium, kinetic and thermodynamic tests. J Environ Eng Landscape Manage. 2015;23(03):172-182. DOI: 10.3846/16486897.2015.1050398.10.3846/16486897.2015.1050398
  12. [12] Sahranavard M, Ahmadpour A, Doosti MR. Biosorption of hexavalent chromium ions from aqueous solutions using almond green hull as a low-cost biosorbent. Eur J Sci Res. 2011;58(3):392-400. DOI: 10.1155/2014/67024910.1155/2014/670249
  13. [13] Deniz F. Dye removal by almond shell residues: Studies on biosorption performance and process design.
  14. Materials Sci Eng. 2013;C 33:2821-2826. DOI: 10.1016/j.msec.2013.03.009.10.1016/j.msec.2013.03.009
  15. [14] Ardejani FD, Badii K, Yousefi Limaee N, Shafaei SZ, Mirhabibi AR. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. J Hazard Mater. 2008;151:730-737. DOI: 10.1016/j.jhazmat.2007.06.048.10.1016/j.jhazmat.2007.06.048
  16. [15] Mehrasbi MR, Farahmandkia Z, Taghibeigloo B, Taromi A. Adsorption of lead and cadmium from aqueous solution by using almond shells. Water Air Soil Pollut. 2009;199:343-351. DOI: 10.1007/s11270-008-9883-9.10.1007/s11270-008-9883-9
  17. [16] Duran C, Ozdes D, Gundogdu A, Senturk HB. Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J Chem Eng Data. 2011;56:2136-2147. DOI: 10.1021/je101204j.10.1021/je101204j
  18. [17] Fathi MR, Asfaram A, Hadipour A, Roosta M. Kinetics and thermodynamic studies for removal of acid blue 129 from aqueous solution by almond shell. J Environ Health Sci Eng. 2014;12:62. DOI: 10.1186/2052-336X-12-62.10.1186/2052-336X-12-62
  19. [18] Hashemian S, Salari K, Yazdi ZA. Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution. J Industrial Eng Chem. 2014;20:1892-1900. DOI: 10.1016/j.jiec.2013.09.009.10.1016/j.jiec.2013.09.009
  20. [19] Wang XS, Qin Y. Equilibrium sorption isotherms of Cu2+ on rice bran. Process Biochem. 2005;40:677-680. DOI: 10.1016/j.procbio.2004.01.043.10.1016/j.procbio.2004.01.043
  21. [20] Ajmal M, Khan AH, Ahmad S, Ahmad A. Role of sawdust in the removal of copper(II) from industrial wastes. Water Res. 1998;32:3085-309. DOI: 10.1016/S0043-1354(98)00067-0.10.1016/S0043-1354(98)00067-0
  22. [21] Goyal M, Rattan VK, Aggarwal D, Bansal RC. Removal of copper from aqueous solutions by adsorption on activated carbons. Colloids Surf. 2001;190:229-238. DOI: 10.1016/S0927-7757(01)00656-2.10.1016/S0927-7757(01)00656-2
  23. [22] Srivastava SK, Tyagi R, Pant N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 1989;23(9):1161-1165. DOI: 10.1016/0043-1354(89)90160-7.10.1016/0043-1354(89)90160-7
  24. [23] El-Kamash AM, Zaki AA, Abed El Geleel M. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater. 2005;127:211-220. DOI: 10.1016/j.jhazmat.2005.07.021.10.1016/j.jhazmat.2005.07.02116125311
  25. [24] Paduraru C, Tofan L, Teodosiu C, Bunia I, Tudorachi N, Toma O. Biosorption of zinc(II) on rapeseed waste: equilibrium studies and thermogravimetric investigations. Process Saf Environ Prot. 2015;94:18-28. DOI: 0.1016/j.psep.2014.12.003.10.1016/j.psep.2014.12.003
  26. [25] Lee S, Kwon O, Yoo K, Alorro RD. Removal of Zn from contaminated sediment by FeCl3 in HCl solution. Metals. 2015;5:1812-1820. DOI: 10.3390/met5041812.10.3390/met5041812
  27. [26] Giwa AA, Abdulsalam KA, Wewers F, Oladipo MA. Biosorption of acid dye in single and multidye systems onto sawdust of locust bean (Parkia biglobosa) tree. J Chem. 2016; Article ID 6436039. DOI: 10.1155/2016/6436039.10.1155/2016/6436039
  28. [27] Aljeboreea AM, Alshirifib AN, Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem. 2014. DOI: 10.1016/j.arabjc.2014.01.020.10.1016/j.arabjc.2014.01.020
  29. [28] Maheshwari U, Mathesan B, Gupta S. Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): Kinetic, thermodynamics and mass transfer mechanism. Process Saf Environ Protect. 2015;98:198-210. DOI: 10.1016/j.psep.2015.07.010.10.1016/j.psep.2015.07.010
  30. [29] Subramani SE, Thinakaran N. Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf Environ Protect. 2017;106:1-10. DOI: 10.1016/j.psep.2016.11.024.10.1016/j.psep.2016.11.024
  31. [30] Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. (On the theory of the so-called adsorption of dissolved substances. Kungliga Svenska Vetenskaps Academy). Handlingar Band. 1898;24(4):1-39.
  32. [31] Zhang J, Cai D, Zhang G, Cai C, Zhang C, Qiu G, et al. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl Clay Sci. 2013;83-84:137-143. DOI: 10.1016/j.clay.2013.08.033.10.1016/j.clay.2013.08.033
  33. [32] Ho YS, McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng. 1998;76(4):822-827. DOI: 10.1002/cjce.5450760419.10.1002/cjce.5450760419
  34. [33] Weber WJ, Morris JC. Kinetics of adsorption on carbon from solutions. Amer Soc Civil Engineers. 1963;89:31-60.
  35. [34] Murugesan A, Ravikumar L, Selva Bala BV, Kumar SP, Vidhyadevi T, Dnesh Kirupha S, et al. Removal of Pb(II) Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: equilibrium and kinetic approach. Desalination. 2011;271:199-208. DOI: 10.1016/j.desal.2010.12.029.10.1016/j.desal.2010.12.029
  36. [35] Hameed BH. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater. 2008;154:204-212. DOI: 10.1016/j.jhazmat.2007.10.010.10.1016/j.jhazmat.2007.10.01018023971
  37. [36] Wu FC, Tseng RL, Juang RS. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye chitosan systems. Chem Eng J. 2009;150:366-373. DOI: 10.1016/j.cej.2009.01.014.10.1016/j.cej.2009.01.014
  38. [37] Bangham DH, Burt FP. The behavior of gases in contact with glass surfaces. Proc Royal Soc London. Ser A: Math Phys Character. 1924;105:481-488. http://www.jstor.org/stable/94228.10.1098/rspa.1924.0032
  39. [38] Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, et al. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J Hazard Mater. 2008;160:655-661. DOI: 10.1016/j.jhazmat.2008.03.038.10.1016/j.jhazmat.2008.03.03818455299
  40. [39] Nuhoglu Y, Malkoc E. Thermodynamic and kinetic studies for environmentally friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour Technol. 2009;100:2375-2380. DOI: 10.1016/j.biortech.2008.11.016.10.1016/j.biortech.2008.11.01619114302
  41. [40] Joo JH, Hassan SHA, Oh SE. Comparative study of biosorption of Zn2 by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterioration Biodegrad. 2010;64:734-741. DOI: 10.1016/j.ibiod.2010.08.007.10.1016/j.ibiod.2010.08.007
  42. [41] Dotto GL, Pinto LAA. Analysis of mass transfer kinetics in the biosorption of synthetic dyes onto Spirulina platensis nanoparticles. Biochem Eng J. 2012;68:85-90. DOI: 10.1016/j.bej.2012.07.010.10.1016/j.bej.2012.07.010
  43. [42] Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, Calvete T. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive red 120 dye from aqueous effluents. J Hazard Mater. 2012;241-242:146-153. DOI: 10.1016/j.jhazmat.2012.09.026.10.1016/j.jhazmat.2012.09.02623040660
  44. [43] Kavitha D, Namasivayam C. Recycling coir pith, an agricultural solid waste, for the removal of procion orange from wastewater. Dyes Pigm. 2007;74:237-248. DOI: 10.1016/j.dyepig.2006.01.040.10.1016/j.dyepig.2006.01.040
  45. [44] Dursun YA. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem Eng. 2006;28:187-195. DOI: 10.1016/j.bej.2005.11.003.10.1016/j.bej.2005.11.003
  46. [45] Yanping J, Yunying W, Julin C, Yunhai W. Adsorption behavior of Cr(VI), Ni(II), and Co(II) onto zeolite 13x. Desalin Water Treat. 2015;54(2):511-524. DOI: 10.1080/19443994.2014.883333.10.1080/19443994.2014.883333
  47. [46] Brunader S. The Adsorption of Gases and Vapors. Vol. 1. London: Oxford University Press; 1942.
  48. [47] Wang S, Li H. Dye adsorption on unburned carbon: Kinetics and equilibrium. J Hazard Mater. 2005;126:71-77. DOI: 10.1016/j.jhazmat.2005.05.049.10.1016/j.jhazmat.2005.05.049
  49. [48] Langmuir I. The adsorption of gases on mica and platinum. J Am Chem Soc. 1918;40:1361-1403.10.1021/ja02242a004
  50. [49] Freundlich H. Colloid and Capillary Chemistry. London: Metheun; 1926.
  51. [50] Thomas JM, Thomas WJ. Introduction to the Principles of Heterrogeneous Catalysis. New York: Academic Press; 1967.
  52. [51] Dubinin MM, Radushkevich LV. Proc Acad Sci Physico Chem. 1947;550:331-340.
  53. [52] Hasany SM, Chaudhary MH. Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution. Appl Radiation Isotopes. 1996;47:467-471. DOI: 10.1016/0969-8043(95)00310-X.10.1016/0969-8043(95)00310-X
  54. [53] Onyang MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci. 2004;279:341-350. DOI: 10.1016/j.jcis.2004.06.038.10.1016/j.jcis.2004.06.03815464797
  55. [54] Temkin MJ, Phyzev V. Recent modifications to Langmuir isotherms. Acta Physicochim USSR. 1940;12:217-222.
  56. [55] Aharoni C, Ungarish M. Kinetics of activated chemisorption. Part 2-Theoretical models. J Chem Soc Faraday Trans. 1977;73:456-464. DOI: 10.1039/F19777300456.10.1039/f19777300456
  57. [56] Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Colloid Interface Sci. 2004;279:307-313. DOI: 10.1016/j.jcis.2004.06.042.10.1016/j.jcis.2004.06.04215464794
  58. [57] Harkıns WD, Jura G. Surfaces of Solids. XIII. A Vapor Adsorption Method for the Determination of the Area of a Solid without the Assumption of a Molecular Area, and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid. J Chem Phys. 1944;66(8):1366-1373. DOI: 10.1021/ja01236a048.10.1021/ja01236a048
  59. [58] Hameed B, Mahmoud D, Ahmad A. Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surfaces A: Physicochem Eng Aspects. 2008;316(1):78-84. DOI: 10.1016/j.colsurfa.2007.08.033.10.1016/j.colsurfa.2007.08.033
  60. [59] Aksu Z, Kabasakal E. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep Purif Technol. 2004;35:223-240. DOI: 10.1016/S1383-5866(03)00144-8.10.1016/S1383-5866(03)00144-8
  61. [60] Shah J, Jan MR, Haq A, Zeeshan M. Equilibrium, kinetic and thermodynamic studies for sorption of Ni(II) from aqueous solution using formaldehyde treated waste tea leaves. J Saudi Chem Soc. 2015;19(3):301-310. DOI: 10.1016/j.jscs.2012.04.004.10.1016/j.jscs.2012.04.004
  62. [61] Kulkarni RM, Shetty KV, Srinikethan G. Cadmium(II) and nickel(II) biosorption by Bacillus laterosporus (MTCC 1628). J Taiwan Inst Chem Engineers. 2014;45(4):1628-1635. DOI: 10.1016/j.jtice.2013.11.006.10.1016/j.jtice.2013.11.006
  63. [62] Ahmad MF, Hayda S, Quraishi TA. Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeterioration Biodegrad. 2013;83:119-128. DOI: 10.1016/j.ibiod.2013.04.016.10.1016/j.ibiod.2013.04.016
  64. [63] Argun ME, Dursun S, Ozdemir C, Karatas M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater. 2007;141:77-85. DOI: 10.1016/j.jhazmat.2006.06.095.10.1016/j.jhazmat.2006.06.09516879919
  65. [64] Shukla SR, Pai RS. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded ground- nut shells and sawdust. Sep Purif Technol. 2005;43:1-8. DOI: 10.1016/j.seppur.2004.09.003.10.1016/j.seppur.2004.09.003
  66. [65] Putra WP, Kamari A, Yusoff SNM, Ishak CF, Mohamed A, Hashim N, et al. Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. J Encapsulation Adsorption Sci. 2014;4:25-35. DOI: 10.4236/jeas.2014.41004.10.4236/jeas.2014.41004
  67. [66] Hossain MA, Ngo HH, Guo WS, Setiati T. Adsorption and desorption of copper(II) ions onto garden grass. Bioresour Technol. 2012;121:386-395. DOI: 10.1016/j.biortech.2012.06.119.10.1016/j.biortech.2012.06.11922864175
  68. [67] Osman HE, Badwy RK, Ahmad HF. Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol. 2010;2:51-62. http://scienceflora.org/journals/index.php/jp/article/viewFile/2100/2079.
  69. [68] Qian Q, Mochidzuki K, Fujii T, Sakoda A. Removal of copper from aqueous solution using iron containing adsorbents derived from methane fermentation sludge. J Hazard Mater. 2009;172:1137-1144. DOI: 10.1016/j.jhazmat.2009.07.107.10.1016/j.jhazmat.2009.07.10719726131
  70. [69] Acheampong MA, Pakshirajan K, Annachhatre AP, Lens PNL. Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. J Ind Eng Chem. 2013;19:841-848. DOI: 10.1016/j.jiec.2012.10.029.10.1016/j.jiec.2012.10.029
  71. [70] Komy ZR, Abdelraheem WH, Ismail NM. Biosorption of Cu2+ by Eichhornia crassipes: physicochemical characterization, biosorption modeling and mechanism. J King Saud Univ. 2013;25:47-56. DOI: 10.1016/j.jksus.2012.04.00210.1016/j.jksus.2012.04.002
DOI: https://doi.org/10.1515/eces-2017-0007 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 87 - 106
Published on: Apr 12, 2017
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Sayiter Yildiz, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.