Have a personal or library account? Click to login
Nitrogen Transportation and Transformation Under Different Soil Water and Salinity Conditions Cover

Nitrogen Transportation and Transformation Under Different Soil Water and Salinity Conditions

Open Access
|Dec 2016

References

  1. [1] Flowers T, Yeo A. Breeding for salinity resistance in crop plants: where next? Functional Plant Biology. 1995;22(6):875-884. DOI: 10.1071/PP9950875.10.1071/PP9950875
  2. [2] Dai X, Huo Z, Wang H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crop Res. 2011;121(3):441-449. DOI: 10.1016/j.fcr.2011.01.016.10.1016/j.fcr.2011.01.016
  3. [3] Pereira L, Goncalves J, Dong B, Mao Z, Fang S. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agr Water Manage. 2007;93(3):109-122. DOI: 10.1016/j.agwat.2007.07.004.10.1016/j.agwat.2007.07.004
  4. [4] Li J, Pu L, Han M, Zhu M, Zhang R, Xiang Y. Soil salinization research in China: Advances and prospects. J Geograph Sci. 2014;24(5):943-960. DOI: 10.1007/s11442-014-1130-2.10.1007/s11442-014-1130-2
  5. [5] Meng CH, Yang JZ. Experimental research on the radical selection of autumn irrigation norm in Hetao Irrigation District, China. Rural Water Res Hydropower. 2002;5:23-25. DOI: 10.3969/j.issn.1007-2284.2002.05.009.
  6. [6] Feng Z, Wang X, Feng Z. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agr Water Manage. 2005;71(2):131-143. DOI: 10.1016/j.agwat.2004.07.001.10.1016/j.agwat.2004.07.001
  7. [7] Zhu Z, Chen D. Nitrogen fertilizer use in China - contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys. 2002;63(2-3):117-127. DOI: 10.1023/A:1021107026067.10.1023/A:1021107026067
  8. [8] Zhang W, Tian Z, Zhang N, Li X. Nitrate pollution of groundwater in northern China. Agricult Ecosyst Environ. 1996;59(3):223-231. DOI: 10.1016/0167-8809(96)01052-3.10.1016/0167-8809(96)01052-3
  9. [9] Zhang S, Gao P, Tong Y, Norse D, Lu Y, Powlson D. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: A case study from Shaanxi Province, northwest China. Agricult Ecosyst Environ. 2015. DOI: 10.1016/j.agee.2015.03.002.10.1016/j.agee.2015.03.002
  10. [10] Al-Busaidi KT, Buerkert A, Joergensen RG. Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils. J Arid Environ. 2014;100:106-110. DOI: 10.1016/j.jaridenv.2013.10.013.10.1016/j.jaridenv.2013.10.013
  11. [11] Baligar V, Fageria N. Nutrient Use Efficiency in Plants: An Overview, in Nutrient Use Efficiency: from Basics to Advances. India: Springer; 2015. 1-14. DOI 10.1007/978-81-322-2169-2_1.10.1007/978-81-322-2169-2_1
  12. [12] Dzurella K, Pettygrove G, Fryjoff-Hung A, Hollander A, Harter T. Potential to assess nitrate leaching vulnerability of irrigated cropland. J Soil Water Conserv. 2015;70(1):63-72. DOI: 10.2489/jswc.70.1.63.10.2489/jswc.70.1.63
  13. [13] Valkama E, Lemola R, Känkänen H, Turtola E. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agricult Ecosyst Environ. 2015;203:93-101. DOI: 10.1016/j.agee.2015.01.023.10.1016/j.agee.2015.01.023
  14. [14] Gilliam J, Logan TJ, Broadbent F. Fertilizer use in relation to the environment. Fertilizer technology and use. 1985 (fertilizertechn): 561-588. DOI:10.2136/1985.
  15. [15] Silva R, Jorgensen E, Holub S, Gonsoulin M. Relationships between culturable soil microbial populations and gross nitrogen transformation processes in a clay loam soil across ecosystems. Nutr Cycl Agroecosys. 2005;71(3):259-270. DOI: 10.1007/s10705-004-6378-y.10.1007/s10705-004-6378-y
  16. [16] Purnomo E, Black A, Conyers M. The distribution of net nitrogen mineralisation within surface soil. 2. Factors influencing the distribution of net N mineralisation. Soil Res. 2000;38(3):643-652. DOI: 10.1071/SR99059.10.1071/SR99059
  17. [17] Kern J, Kreibich H, Darwich A, McClain M. Nitrogen dynamics on the Amazon flood plain in relation to the flood pulse of the Solimões River. The ecohydrology of South American rivers and wetlands. 2002:35-47. DOI: 10.5876/9781607323693.c022.10.5876/9781607323693.c022
  18. [18] Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol. 2009;15(4):808-824. DOI: 10.1111/j.1365-2486.2008.01681.x.10.1111/j.1365-2486.2008.01681.x
  19. [19] Rietz DN, Haynes RJ. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem. 2003;35(6):845-854. DOI: 10.1016/S0038-0717(03)00125-1.10.1016/S0038-0717(03)00125-1
  20. [20] Pathak H, Rao D. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem. 1998;30(6):695-702. DOI: 10.1016/S0038-0717(97)00208-3.10.1016/S0038-0717(97)00208-3
  21. [21] Khoi CM, Guong VT, Merckx R. Predicting the release of mineral nitrogen from hypersaline pond sediments used for brine shrimp Artemia franciscana production in the Mekong Delta. Aquaculture. 2006;257(1):221-231. DOI: 10.1016/j.aquaculture.2006.02.075.10.1016/j.aquaculture.2006.02.075
  22. [22] Simunek J, Huang K, Van Genuchten MT. The HYDRUS-ET Software Package for Simulating the One-Dimentional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media, Version 1.1. 1997: Bratislava: Inst. Hydrology Slovak Acad. Sci. https://www.pc-progress.com/en/Default.aspx?Downloads.
  23. [23] Gonçalves MC, Šimůnek J, Ramos TB, Martins JC, Neves MJ, Pires FP. Multicomponent solute transport in soil lysimeters irrigated with waters of different quality. Water Resour Res. 2006;42:W08401. DOI: 10.1029/2005WR004802.10.1029/2005WR004802
  24. [24] Forkutsa I, Sommer R, Shirokova Y, Lamers J, Kienzler K, Tischbein B, et al. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: I. Water dynamics. Irrigation Sci. 2009;27(4):331-346. DOI: 10.1007/s00271-009-0148-1.10.1007/s00271-009-0148-1
  25. [25] Ngoc MN, Dultz S, Kasbohm J. Simulation of retention and transport of copper, lead and zinc in a paddy soil of the Red River Delta, Vietnam. Agricult Ecosyst Environ. 2009;129(1):8-16. DOI: 10.1016/j.agee.2008.06.008.10.1016/j.agee.2008.06.008
  26. [26] Hachicha M, Mansour M, Rejeb S, Mougou R, Askri H, Abdelgawad J. Applied Research for the Utilization of Brackish/Saline Water in Center of Tunisia: water use. salinity evolution and crop response. Proceedings of International Salinity Forum. 2005. Riverside. http://www.worldcat.org/title/international-salinity-forum-managing-saline-soils-and-water-science-technology-and-social-issues-april-25-27-2005-salinity-forum-april-28-2005-farm-tour-riverside-convention-center-riverside-california/oclc/224317463.
  27. [27] Zeng W, Xu C, Wu J, Huang J, Ma T. Effect of salinity on soil respiration and nitrogen dynamics. Ecol Chem Eng S. 2013;20(3):519-530. DOI: 10.2478/eces-2013-0039.10.2478/eces-2013-0039
  28. [28] Šimůnek J, Van Genuchten MT, Sejna M. The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 3.0, HYDRUS software series 1. Department of Environmental Sciences, University of California Riverside, Riverside, California. 2005: 270. https://www.pc-progress.com/en/Default.aspx?Downloads.
  29. [29] Doherty J, Brebber L, Whyte P. PEST: Model-independent parameter estimation. Corinda, Australia: Watermark Computing; 1994; 122. http://www.pesthomepage.org/Downloads.php.
  30. [30] Selim H, Iskandar I. Modeling nitrogen transport and transformations in soils: 1. Theoretical considerations. Soil Sci. 1981;131(4):233-241. DOI: 10.1097/00010694-198104000-00007.10.1097/00010694-198104000-00007
  31. [31] Li Y, Šimůnek J, Zhang Z, Jing L, Ni L. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agr Water Manage. 2015;148:213-222. DOI: 10.1016/j.agwat.2014.10.010.10.1016/j.agwat.2014.10.010
  32. [32] Tan X, Shao D, Gu W, Liu H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agr Water Manage. 2015;150:67-80. DOI: 10.1016/j.agwat.2014.12.005.10.1016/j.agwat.2014.12.005
  33. [33] Mailhol J, Ruelle P, Nemeth I. Impact of fertilisation practices on nitrogen leaching under irrigation. Irrigation Sci. 2001;20(3):139-147. DOI: 10.1007/s002710100038.10.1007/s002710100038
  34. [34] Patrick WH, Mahapatra I. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv Agron. 1968;20:323-359. DOI: 10.1016/S0065-2113(08)60860-3.10.1016/S0065-2113(08)60860-3
  35. [35] Hale S, Alling V, Martinsen V, Mulder J, Breedveld G, Cornelissen G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere. 2013;91(11):1612-1619. DOI: 10.1016/j.chemosphere.2012.12.057.10.1016/j.chemosphere.2012.12.05723369636
  36. [36] Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry. 2013;114(1-3):225-244. DOI: 10.1007/s10533-012-9805-1.10.1007/s10533-012-9805-1
  37. [37] Gao H, Bai J, He X, Zhao Q, Lu Q, Wang J. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PloS ONE. 2014;9(4):e95011. DOI: 10.1371/journal.pone.0095011.10.1371/journal.pone.0095011
  38. [38] Rysgaard S, Thastum P, Dalsgaard T, Christensen P B, Sloth N P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries. 1999;22(1):21-30. DOI: 10.2307/1352923.10.2307/1352923
  39. [39] Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K, Bandyapadhyay BK. Microbial biomass and its activities in salt-affected coastal soils. Biol Fert Soils. 2006;42(3):273-277. DOI: 10.1007/s00374-005-0037-6.10.1007/s00374-005-0037-6
  40. [40] Wong VN, Dalal RC, Greene RS. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fert Soils. 2008;44(7):943-953. DOI: 10.1007/s00374-008-0279-1.10.1007/s00374-008-0279-1
  41. [41] Chen R, Twilley RR. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries. 1999;22(4):955-970. DOI: 10.2307/1353075.10.2307/1353075
  42. [42] Nkrumah M, Griffith SM, Ahmad N. Lysimeter and field studies on 15N in a tropical soil-transformation of (NH2)2CO-15N in a tropical loam in lysimeter and field plots. Plant Soil. 1989;114:13-18. DOI: 10.1007/BF02203075.10.1007/BF02203075
  43. [43] Hall NS, Paerl HW, Peierls BL, Whipple AC, Rossignol KL. Effects of climatic variability on phytoplankton community structure and bloom development in the eutrophic, microtidal, New River Estuary, North Carolina, USA. Estuarine, Coastal Shelf Sci. 2013;117:70-82. DOI: 10.1016/j.ecss.2012.10.004.10.1016/j.ecss.2012.10.004
  44. [44] Yoshie S, Ogawa T, Makino H, Hirosawa H, Tsuneda S, Hirata A. Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett Appl Microbiol. 2006;42(3):277-283. DOI: 10.1111/j.1472-765X.2005.01839.x.10.1111/j.1472-765X.2005.01839.x
  45. [45] Laura R. Salinity and nitrogen mineralization in soil. Soil Biol Biochem. 1977;9(5):333-336. DOI: 10.1016/0038-0717(77)90005-0.10.1016/0038-0717(77)90005-0
DOI: https://doi.org/10.1515/eces-2016-0048 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 677 - 693
Published on: Dec 30, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Wen-Zhi Zeng, Tao Ma, Jie-Sheng Huang, Jing-Wei Wu, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.