Have a personal or library account? Click to login
Impact of Use of Chemical Transformation Modules in Calpuff on the Results of Air Dispersion Modelling Cover

Impact of Use of Chemical Transformation Modules in Calpuff on the Results of Air Dispersion Modelling

Open Access
|Dec 2016

References

  1. [1] Hanna SR, Schulman LL, Paine RJ, Pleim JE, Baer M. Development and evaluation of the offshore and coastal dispersion model. J Air Pollut Control Assoc. 1985;35(10):1039-1047. DOI: 10.1080/00022470.1985.10466003.10.1080/00022470.1985.10466003
  2. [2] Steven PG. CTDMPLUS: A Dispersion model for sources near complex topography. Part I: Technical formulations. J Appl Meteorol. 1992;31(7):633-645. DOI: 10.1175/1520-04501992031<;0633:CADMFS>2.0.CO;2.
  3. [3] Paumier JO, Burns DJ, Perry SG. CTDMPLUS: A dispersion model for sources near complex topography. Part II: Performance characteristics. J Appl Meteorol. 1992;31(7):646-660. DOI: 10.1175/1520-04501992031<;0646:CADMFS>2.0.CO;2.
  4. [4] US EPA. User’s guide for the Industrial Source Complex (ISC3) Dispersion Models: Volume II - Description of Model Algorithms. Tech. Rep. EPA-454/B-95-003b. Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division, Research Triangle Park, NC; 1995. https://www.epa.gov/scram001/userg/regmod/isc3v2.pdf.
  5. [5] Janicke U, Janicke L. Lagrangian particle modelling for regulatory purposes - a survey of recent developments in Germany. 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. 2004:109-113. http://www.harmo.org/conferences/proceedings/_Cambridge/publishedSections/Op109-113.pdf.
  6. [6] Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine RJ, Wilson RB, et al. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J Appl Meteorol. 2005;44(5):682-693. DOI: 10.1175/JAM2227.1.10.1175/JAM2227.1
  7. [7] Perry SG, Cimorelli AJ, Paine RJ, Brode RW, Weil JC, Venkatram A, et al. AERMOD: A dispersion model for industrial source applications. Part II: Model performance against 17 field study databases. J Appl Meteorol. 2005;44(5):694-708. DOI: 10.1175/JAM2228.1.10.1175/JAM2228.1
  8. [8] Helge Rørdam Olesen PL, Berkowicz R. OML: Review of model formulation. NERI Technical Report No. 609; 2007. http://www.dmu.dk/Pub/FR609.pdf.
  9. [9] CERC. ADMS 5.0 Flat Terrain Validation Kincaid, Indianapolis and Prairie Grass. June 2013. http://www.cerc.co.uk/environmental-software/assets/data/doc_validation/CERC_ADMS5_Study_Validation_Kincaid_Indianapolis_PrairieGrass_5.0_vs_4.2.pdf.
  10. [10] Holmes NS, Morawska L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos Environ. 2006;40:5902-5928. DOI: 10.1016/j.atmosenv.2006.06.003.10.1016/j.atmosenv.2006.06.003
  11. [11] Scire JS, Robe FR, Fernau ME, Yamartino RJ. A user’s guide for the CALMET meteorological model (Version 5). Earth Tech, Inc. Concord, MA; 2000. http://www.src.com/calpuff/download/CALMET_UsersGuide.pdf.
  12. [12] Scire JS, Strimaitis DG, Yamartino RJ. A user’s guide for the CALPUFF dispersion model (Version 5). Earth Tech, Inc. Concord, MA; 2000. http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf.
  13. [13] Karamchandani P, Chen S, Seigneur C. CALPUFF Chemistry Upgrade. AER Final Report CP277-07-01 prepared for API, Washington, DC. San Ramon, CA; Atmospheric & Environmental Research, Inc.; 2008. https://www3.epa.gov/ttn/scram/11thmodconf/200802-CALPUFF_Chemistry_Upgrade.pdf.
  14. [14] Karamchandani P, Chen S-Y, Balmori R. Evaluation of original and improved versions of CALPUFF using the 1995 SWWYTAF data base. AER Report CP281-09-01 prepared for API, Washington, DC. San Francisco, CA: Atmospheric and Environmental Research, Inc.; 2009. http://mycommittees.api.org/rasa/amp/CALPUFF%20Projects%20and%20Studies/CALPUFF%20Evaluation%20with%20SWWYTAF,%202009,%20Kharamchandani%20et%20al.pdf.
  15. [15] Scire JS, Strimaitis DG, Wu Z-X. New developments and evaluations of the CALPUFF model exponent. 10th EPA Conference on Air Quality Modeling. Research Triangle Park, NC; March 2012. http://mycommittees.api.org/rasa/amp/CALPUFF%20Projects%20and%20Studies/CALPUFF%20Evaluation%20with%20SWWYTAF,%202009,%20Kharamchandani%20et%20al.pdf.
  16. [16] Suppan P, Skouloudis A. Inter-comparison of two air quality modelling systems for a case study in Berlin. Int J Environ Pollut. 2003;20:75-84. DOI: 10.1504/IJEP.2003.004250.10.1504/IJEP.2003.004250
  17. [17] Juda-Rezler K. New challenges in air quality and climate modeling. Archiv Environ Protect. 2010;36(1):3-28. www.ipis.zabrze.pl/dokumenty/archives/roczniki/2010/AOS10-1.pdf.
  18. [18] Karamchandani P, Vijayaraghavan K, Yarwood G. Sub-grid scale plume modeling. Atmosphere. 2011;2(3):389-406. DOI: 10.3390/atmos2030389.10.3390/atmos2030389
  19. [19] Leelőssy Á, Molnár F, Izsák F, Havasi Á, Lagzi I, Mészáros R. Dispersion modeling of air pollutants in the atmosphere: a review. Open Geosciences. 2014;6(3):257-278. DOI: 10.2478/s13533-012-0188-6.10.2478/s13533-012-0188-6
  20. [20] US EPA. Guideline on Air Quality Models: Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule. Federal Register, 40 CFR Part 51. 2005;70(216):68218-68261. https://www3.epa.gov/scram001/guidance/guide/appw_05.pdf.
  21. [21] US EPA. Clarification of regulatory status of CALPUFF for near-field applications. Office of Air Quality Planning and Standards, Air Quality Assessment Division, Research Triangle Park, NC; 2008. https://www3.epa.gov/scram001/guidance/clarification/clarification%20of%20regulatory%20status%20of%20calpuff.pdf.
  22. [22] Levy JI, Spengler JD, Hlinka D, Sullivan D, Moon D. Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensitivity and implications. Atmos Environ. 2002;36:1063-1075. DOI: 10.1016/S1352-2310(01)00493-9.10.1016/S1352-2310(01)00493-9
  23. [23] Levy JI, Wilson AM, Evans JS, Spengler JD. Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia. Environ Sci Technol. 2003;37(24):5528-36. DOI: 10.1021/es034484l.10.1021/es034484l14717160
  24. [24] Yim SHL, Fung JCH, Lau AKH. Use of high-resolution MM5/CALMET/CALPUFF system: SO2 apportionment to air quality in Hong Kong. Atmos Environ. 2010;44:4850-4858. DOI: 10.1016/j.atmosenv.2010.08.037.10.1016/j.atmosenv.2010.08.037
  25. [25] Cui H, Yao R, Xu X, Xin C, Yang J. A tracer experiment study to evaluate the CALPUFF real time application in a near-field complex terrain setting. Atmos Environ. 2011;45(39):7525-7532. DOI: 10.1016/j.atmosenv.2011.08.041.10.1016/j.atmosenv.2011.08.041
  26. [26] Hernández-Garces A, Souto Ja, Rodríguez Á, Saavedra S, Casares JJ. Validation of CALMET/CALPUFF models simulations around a large power plant stack. Física de la Tierra. 2015;27:35-55. DOI: http://dx.doi.org/10.5209/rev_FITE.2015.v27.51192.10.5209/rev_FITE.2015.v27.51192
  27. [27] Dresser AL, Huizer RD. CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. J Air Waste Manage Assoc. 2011;61(6):647-659. DOI: 10.3155/1047-3289.61.6.647.10.3155/1047-3289.61.6.647
  28. [28] Gulia S, Kumar A, Khare M. Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J Sci Ind Res. 2015;74:302-307. http://nopr.niscair.res.in/handle/123456789/31451.
  29. [29] Jittra N, Pinthong N, Thepanondh S. Performance evaluation of AERMOD and CALPUFF air dispersion models in industrial complex area. Air Soil Water Res. 2015;8:87-95. DOI:10.4137/ASWR.S32781.10.4137/ASWR.S32781
  30. [30] Rood AS. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos Environ. 2014;89:707-720. DOI: 10.1016/j.atmosenv.2014.02.054.10.1016/j.atmosenv.2014.02.054
  31. [31] Tartakovsky D, Broday DM, Stern E. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ Pollut. 2013;179:138-145. DOI: 10.1016/j.envpol.2013.04.023.10.1016/j.envpol.2013.04.023
  32. [32] Thepanondh S, Outapa P, Saikomol S. Evaluation of dispersion model performance in predicting SO2 concentrations from petroleum refinery complex. Int J GEOMATE. 2016;11(23):2129-2135. http://www.geomatejournal.com/sites/default/files/articles/2129-2135-1118-Thepanondh-July-2016-c1.pdf.
  33. [33] Holnicki P, Kałuszko A, Trapp W. An urban scale application and validation of the CALPUFF model. Atmos Pollut Res. 2015;7(3):393-402. DOI: 10.1016/j.apr.2015.10.016.10.1016/j.apr.2015.10.016
  34. [34] Zhou Y, Levy JI, Hammitt JK, Evans JS. Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China. Atmos Environ. 2003;37(6):815-826. DOI: 10.1016/S1352-2310(02)00937-8.10.1016/S1352-2310(02)00937-8
  35. [35] López MT, Zuk M, Garibay V, Tzintzun G, Iniestra R, Fernández A. Health impacts from power plant emissions in Mexico. Atmos Environ. 2005;39(7):1199-1209. DOI: 10.1016/j.atmosenv.2004.10.035.10.1016/j.atmosenv.2004.10.035
  36. [36] Hao J, Wang L, Shen M, Li L, Hu J. Air quality impacts of power plant emissions in Beijing. Environ Pollut. 2007;147:401-408. DOI: 10.1016/j.envpol.2006.06.013.10.1016/j.envpol.2006.06.01316899328
  37. [37] ENVIRON International Corporation. Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments. Final Report UNC-EMAQ 4-06.018.v4 prepared for Office of Air Quality Planning and Standards U.S. EPA. EPA Contract No: EP-D-07-102, Novato, CA; September 2012. https://www3.epa.gov/scram001/reports/Plume_Eval_Final_Sep_2012v5.pdf.
  38. [38] Apostoł M, Bąkowski A, Chronowska-Przywara K, Kot M, Monieta J, Oleniacz R, et al. Wybrane zagadnienia inżynierii mechanicznej, materiałowej i środowiskowej (Selected issues of mechanical, material and environmental engineering). Kraków: Wyd. Katedra Automatyzacji Procesów, AGH w Krakowie; 2015. DOI: 10.13140/RG.2.1.2907.1440.
  39. [39] EEA. Reported data on large combustion plants covered by Directive 2001/80/EC. August 2016. http://www.eea.europa.eu/data-and-maps/data/lcp-1.
  40. [40] US EPA. AP42 Fifth Ed. Vol. 1, 1.1, 1993. http://www.epa.gov/ttn/chief/ap42/ch01/bgdocs/b01s01.pdf.
  41. [41] Chief Inspectorate for Environmental Protection (Poland). Air Quality Portal. http://powietrze.gios.gov.pl (accessed in 31.01.2016).
  42. [42] EEA. AirBase - The European air quality database. http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8/ (accessed in 30.09.2015).
  43. [43] EEA. Air Quality e-Reporting (AQ e-Reporting). May 2016. http://www.eea.europa.eu/data-and-maps/data/aqereporting-1.
  44. [44] Oleniacz R, Rzeszutek M. Determination of optimal spatial databases for the area of Poland to the calculation of air pollutant dispersion using the CALMET/CALPUFF model. Geomat Environ Eng. 2014;8(2):57-69. DOI: 10.7494/geom.2014.8.2.57.10.7494/geom.2014.8.2.57
  45. [45] Oleniacz R, Rzeszutek M. Assessment of the impact of spatial data on the results of air pollution dispersion modeling. Geoinformatica Polonica. 2014;13:57-68. DOI: 10.2478/gein-2014-0006.10.2478/gein-2014-0006
  46. [46] Stelson AW, Seinfeld JH. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environ. 1982;16:983-992. DOI: 10.1016/0004-6981(82)90184-6.10.1016/0004-6981(82)90184-6
  47. [47] Atkinson R, Lloyd AC, Winges L. An updated chemical mechanism for hydrocarbon/NOx/SOx photo oxidation suitable for inclusion in atmospheric simulation models. Atmos Environ. 1982,16:1341-1355. DOI: 10.1016/0004-6981(82)90055-5.10.1016/0004-6981(82)90055-5
  48. [48] Scire JS, Lurmann FW, Bass A, Hanna SR. Development of the MESOPUFF II Dispersion Model. Concord, MA: Environmental Research and Technology, Inc.; Contract No. 68-02-3733; Environmental Sciences Research Lab., Office of Research and Development, U.S. EPA, Research Triangle Park, NC; 1984. https://nepis.epa.gov/Exe/ZyPDF.cgi/9101QF22.PDF?Dockey=9101QF22.PDF.
  49. [49] Morris RE, Kessler RC, Douglas SG, Styles KR, Moore GE. Rocky Mountain Acid Deposition Model Assessment: Acid Rain Mountain Mesoscale Model (ARM3). San Rafael, CA.: Systems Applications, Inc., US EPA, Research Triangle Park, NC, Atmospheric Sciences Research Laboratory; 1988. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB89124408.xhtml.
  50. [50] Nenes A, Pandis SN, Pilinis C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat Geochem. 1998;4(1):123-152. DOI: 10.1023/A:1009604003981.10.1023/A:1009604003981
  51. [51] Fountoukis C, Nenes A. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3-Cl-H2O aerosols. Atmos Chem Phys. 2007;7(17):4639-4659. DOI: 10.5194/acp-7-4639-2007.10.5194/acp-7-4639-2007
  52. [52] Wexler AS, Seinfeld JH. Second-generation inorganic aerosol model. Atmos Environ. 1991;25A:2731-2748. DOI: 10.1016/0960-1686(91)90203-J.10.1016/0960-1686(91)90203-J
  53. [53] TRC Environmental Corporation. CALPUFF Chemistry Updates: User’s Instructions for API Chemistry Options. Prepared for WEST Associates, Lowell, MA; 2010. http://www.src.com/calpuff/download/Mod64_Files/UsersInstructions_UpdatedChemistry.pdf.
DOI: https://doi.org/10.1515/eces-2016-0043 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 605 - 620
Published on: Dec 30, 2016
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Robert Oleniacz, Mateusz Rzeszutek, Marek Bogacki, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.