Have a personal or library account? Click to login
Simulation Model of Contamination Threat Assessment in Water Network Using the Epanet Software Cover

Simulation Model of Contamination Threat Assessment in Water Network Using the Epanet Software

Open Access
|Oct 2016

Abstract

The aim of this study is to assess the risk of failure of group water network in case of raw water contamination. The analysis was based on qualitative simulation performed in hydraulic water network model developed in the EPANET software. It was focused on the quantitative description of the consequences of chemically contaminated water. The methodology of risk assessment relies in determining the consequences of the supply water containing contamination threatening the health and lives of water consumers. The research methodology is as follows: development of a hydraulic model of the water pipeline and it’s hydraulic verification, computer simulations of contamination propagation, calculating the dose delivered to the i-th section of the water supply system supplying water to Ni recipients and the mass of a substance that enters the body li. The simulation results indicate the spread of contamination that after 24 h covered most of the area supplied with water. The load delivered to the resident obtaining water from the i-th section of the water supply network, Li/Ni, was up to 18 g·d-1, at least 15 g·d-1 was received by 34.9% of the population, 10-15 g·d-1 by 12.5% of the residents, 5-10 g·d-1 by 10.7% of the residents, 0-5 g·d-1 by 41.7% of the residents and uncontaminated water was delivered to only 13.3% of the consumers. The dose taken by the statistical consumer (calculated as for adults) l is up to 0.8 g for Li/Ni = 18 g·d-1 and is proportional to Li/Ni.

DOI: https://doi.org/10.1515/eces-2016-0030 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 425 - 433
Published on: Oct 20, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Andrzej Studziński, Katarzyna Pietrucha-Urbanik, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.