Have a personal or library account? Click to login
Uptake of Metals from Single and Multi-Component Systems by Spirulina Platensis Biomass Cover

Uptake of Metals from Single and Multi-Component Systems by Spirulina Platensis Biomass

Open Access
|Oct 2016

References

  1. [1] Dwivedi S, Srivastava S, Mishra S, Kumar A, Tripathi RD, Rai UN, et al. Characterization of native microalgal strains for their chromium bioaccumulation potential: Phytoplankton response in polluted habitats. J Hazard Mater. 2010;173:95-101. DOI: 10.1016/j.jhazmat.2009.08.053.10.1016/j.jhazmat.2009.08.053
  2. [2] Kazy SK, Das SK, Sar PJ. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. Ind Microbiol Biotechnol. 2006;33:773-783. DOI: 10.1007/s10295-006-0108-1.10.1007/s10295-006-0108-1
  3. [3] Jaishankar M, Mathew BB, Shah MS, Murthy TPK, Gowda KRS. Biosorption of few heavy metal ions using agricultural wastes. J Environ Pollut Hum Health. 2014;2:1-6. DOI: 10.12691/jephh-2-1-1.
  4. [4] Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J. 2009;44:19-41. DOI: 10.1016/j.bej.2008.12.009.10.1016/j.bej.2008.12.009
  5. [5] Chojnacka K. Biosorption and bioaccumulation - the prospects for practical applications. Environ Int. 2010;36:299-307. DOI: 10.1016/j.envint.2009.12.001.10.1016/j.envint.2009.12.001
  6. [6] Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008;26:266-291. DOI: 10.1016/j.biotechadv.2008.02.002.10.1016/j.biotechadv.2008.02.002
  7. [7] Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J. 2009;44:19-41. DOI: 10.1016/j.bej.2008.12.009.10.1016/j.bej.2008.12.009
  8. [8] Palmieri MC, Volesky B, Garcia O Jr. Biosorption of lanthanum using Sargassum fluitans in batch system. Hydrometallurgy. 2002;67:31-36. DOI: 10.1016/S0304-386X(02)00133-0.10.1016/S0304-386X(02)00133-0
  9. [9] Nazari E, Rashchi F, Saba M, Mirazimi SMJ. Simultaneous recovery of vanadium and nickel from power plant flyash: Optimization of parameters using response surface methodology. Waste Manage. 2014;34:2687-2696. DOI: 10.1016/j.wasman.2014.08.021.10.1016/j.wasman.2014.08.02125269818
  10. [10] Tsibakhashvili N, Kalabegishvili T, Mosulishvili L, Kirkesali E, Kerkenjia S, Murusidze I, et al. Biotechnology of Cr(VI) transformation into Cr(III) complexes. J Radioanal Nucl Chem. 2008;278:565-569. DOI: 10.1007/s10967-008-1006-y.10.1007/s10967-008-1006-y
  11. [11] Zinicovscaia I, Cepoi L. Cyanobacteria for Bioremediation of Wastewaters. Switzerland: Springer; 2016. http://www.springer.com/us/book/9783319267494.10.1007/978-3-319-26751-7
  12. [12] Aneja RK, Chaudhary G, Ahluwalia SS, Goyal D. Biosorption of Pb and Zn by non-living biomass of Spirulina sp. Indian J Microbiol. 2010;50:438-42. DOI: 10.1007/s12088-011-0091-8.10.1007/s12088-011-0091-8
  13. [13] Michalak I, Zielinska A, Chojnacka K, Matula J. Biosorption of Cr(III) by microalgae and macroalgae: equilibrium of the process. Am J Agric Biol Sci. 2007;2:284-290. DOI: 10.3844/ajabssp.2007.284.290.10.3844/ajabssp.2007.284.290
  14. [14] Rodrigues MS, Ferreira LS, de Carvalho JC, Lodi A, Finocchio E, Converti A. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. J Hazard Mater. 2012;30:217-218. DOI: 10.1016/j.jhazmat.2012.03.022.10.1016/j.jhazmat.2012.03.022
  15. [15] Kaushik S, Juwarkar A, Malik A, Satya S. Biological removal of Cr(VI) by bacterial isolates obtained from metal contaminated sites. J Environ Sci Health, Part A: Toxic/Hazard Subst Environ Eng. 2008;43:419-423. DOI: 10.1080/10934520701795665.10.1080/10934520701795665
  16. [16] Use of research reactors for neutron activation analysis. Report of an Advisory Group meeting held in Vienna, 22-26 June 1998. IAEA, Austria, 2001. www.pub.iaea.org/books/iaeabooks/6171/Use-of-Research-Reactors-for-Neutron-Activation-Analysis.
  17. [17] Frontasyeva MV. Neutron activation analysis for the life sciences. Phys Part Nuclei. 2011;42:332-378. DOI: 10.1134/S1063779611020043.10.1134/S1063779611020043
  18. [18] Cecal A, Humelnicu D, Popa K, Rudic V, Gulea A, Palamaru I, et al. Bioleaching of UO2 2+ ions from poor uranium ores by means of cyanobacteria. J Radioanal Nucl Chem. 2000;245:427-429. DOI: 10.1023/A:1006707815553.10.1023/A:1006707815553
  19. [19] Merroun ML, Chekroun KB, Arias JM, Gonzalez-Munoz MT. Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere. 2003;52:113-120. DOI: 10.1016/S0045-6535(03)00220-0.10.1016/S0045-6535(03)00220-0
  20. [20] Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR. Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol. 2004;70:3091-3095. DOI: 10.1128/AEM.70.5.3091-3095.2004.10.1128/AEM.70.5.3091-3095.200440442815128571
  21. [21] Larsson MA, Baken S, Gustafsson JP, Hadialhejazi G, Smolders E. Vanadium bioavailability and toxicity to soil microorganisms and plants. Environ Toxicol Chem. 2013;32:2266-2273. DOI: 10.1002/etc.2322.10.1002/etc.232223832669
  22. [22] Crans DC, Smee JJ, Gaidamauskas E, Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev. 2004;104:849-902. DOI: 10.1021/cr020607.
  23. [23] Vasilieva SG, Tambiev AK, Sedykh IM, Lukyanov AA, Bannikh LN. The enrichment of biomass of cyanobacteria with vanadium using the cation and anion forms of its compounds. J Trace Elem Med Biol. 2011;25:109-112. DOI: 10.1016/j.jtemb.2011.03.001.10.1016/j.jtemb.2011.03.00121514809
  24. [24] Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S. Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol. 2005;72:5532-5543. DOI: 10.1128/AEM.71.9.5532-5543.2005.10.1128/AEM.71.9.5532-5543.2005121469616151146
  25. [25] Kalin M, Wheeler WN, Meinrath G. The removal of uranium from mining wastewater using algal/microbial biomass. J Environ Radioact. 2005;78:151-177. DOI: 10.1016/j.jenvrad.2004.05.002.10.1016/j.jenvrad.2004.05.00215511557
  26. [26] Shivakumar CK, Thippeswamy B, Krishnappa M. Optimization of heavy metals bioaccumulation in Aspergillus niger and Aspergillus flavus. Int J Environ Biol. 2014;4:188-195. http://urpjournals.com/tocjnls/13_14v4i2_15.pdf.
  27. [27] Damodaran D, Shetty VK, Balakrishnan RM. Interaction of heavy metals in multimetal biosorption by Galerina vittiformis from soil. Biorem J. 2015;19:56-68. DOI: 10.1080/10889868.2014.939135.10.1080/10889868.2014.939135
  28. [28] Wong YS, Tam NFY, Wastewater Treatment with Algae. Berlin, Heidelberg: Springer-Verlag; 1998. http://link.springer.com/book/10.1007%2F978-3-662-10863-5.
  29. [29] Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrim and the mechanism of the process. Chemosphere. 2005;59:75-84. DOI: 10.1016/j.chemosphere.2004.10.005.10.1016/j.chemosphere.2004.10.00515698647
  30. [30] Understanding variation in partition coefficient, Kd, values. Review of geochemistry and available Kd values for cadmium, cesium, hromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium. EPA 402-R-99-004B 1999. https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-004b.pdf.
DOI: https://doi.org/10.1515/eces-2016-0028 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 401 - 412
Published on: Oct 20, 2016
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Inga Zinicovscaia, Alexey Safonov, Varvara Tregubova, Victor Ilin, Liliana Cepoi, Tatiana Chiriac, Ludmila Rudi, Marina V. Frontasyeva, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.