Have a personal or library account? Click to login
Hyperspectral reflectance models for soil salt content by filtering methods and waveband selection Cover

Hyperspectral reflectance models for soil salt content by filtering methods and waveband selection

Open Access
|Apr 2016

References

  1. [1] Peragón JM, Delgado A, Díaz JaR, Pérez-Latorre FJ. A GIS-based decision tool for reducing salinization risks in olive orchards. Agr Water Manage. 2016;166:33-41. DOI:10.1016/j.agwat.2015.12.005.10.1016/j.agwat.2015.12.005
  2. [2] Benini L, Antonellini M, Laghi M, Mollema P. Assessment of water resources availability and groundwater salinization in future climate and land use change scenarios: A case study from a coastal drainage basin in Italy. Water Resour Manag. 2015;30(2):731-745. DOI: 10.1007/s11269-015-1187-4.10.1007/s11269-015-1187-4
  3. [3] Song D, Liu B, Li X, Chen S, Li L, Ma M, et al. Hyperspectral data spectrum and texture band selection based on the subspace-rough set method. Int J Remote Sens. 2015;36(8):2113-2128. DOI: 10.1080/01431161.2015.1034892.10.1080/01431161.2015.1034892
  4. [4] Kattenborn T, Maack J, Faßnacht F, Enßle F, Ermert J, Koch B. Mapping forest biomass from space-Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models. International J Appl Earth Observation Geoinform. 2015;35:359-367. DOI: 10.1016/j.jag.2014.10.008.10.1016/j.jag.2014.10.008
  5. [5] Dehaan R, Taylor G. Image-derived spectral endmembers as indicators of salinisation. Int J Remote Sens. 2003;24,(4):775-794. DOI: 10.1080/01431160110107635.10.1080/01431160110107635
  6. [6] Csillag F, Pásztor L, Biehl LL. Spectral band selection for the characterization of salinity status of soils. Remote Sens Environ. 1993,43(3):231-242. DOI: 10.1016/0034-4257(93)90068-9.10.1016/0034-4257(93)90068-9
  7. [7] Pang G, Wang T, Liao J, Li S. Quantitative model based on field-derived spectral characteristics to estimate soil salinity in Minqin County, China. Soil Sci Soc Am J. 2014;78,(2):546-555. DOI: 10.2136/sssaj2013.06.0241.10.2136/sssaj2013.06.0241
  8. [8] Hunt GR. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics. 1977;42,(3):501-513. DOI: 10.1190/1.1440721.10.1190/1.1440721
  9. [9] Hick P, Russell W. Some spectral considerations for remote sensing of soil salinity. Soil Res. 1990;28,(3):417-431. DOI:10.1071/SR9900417.10.1071/SR9900417
  10. [10] Hirschfeld T. Salinity determination using NIRA. Appl Spectrosc. 1985;39(4):740-741. DOI: 10.1366/0003702854250293.10.1366/0003702854250293
  11. [11] Tsai F, Philpot W. Derivative analysis of hyperspectral data. Remote Sens Environ. 1998;66(1):41-51. DOI: 10.1016/S0034-4257(98)00032-7.10.1016/S0034-4257(98)00032-7
  12. [12] Andersson M. A comparison of nine PLS1 algorithms. J Chemometr. 2009;23(10):518-529. DOI: 10.1002/cem.1248.10.1002/cem.1248
  13. [13] Dumarey M, Goodwin DJ, Davison C. Multivariate modelling to study the effect of the manufacturing process on the complete tablet dissolution profile. Int J Pharm. 2015;486(1):112-120. DOI: 10.1016/j.ijpharm.2015.03.040.10.1016/j.ijpharm.2015.03.040
  14. [14] Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J. OPLS methodology for analysis of pre-processing effects on spectroscopic data. Chemometr Intell Lab. 2006;84(1):153-158. DOI: 10.1016/j.chemolab.2006.03.013.10.1016/j.chemolab.2006.03.013
  15. [15] Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometr. 2002;16(3):119-128. DOI: 10.1002/cem.695.10.1002/cem.695
  16. [16] Gosselin R, Rodrigue D, Duchesne C. A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications. Chemometr Intell Lab. 2010;100(1):12-21. DOI: 10.1016/j.chemolab.2009.09.005.10.1016/j.chemolab.2009.09.005
  17. [17] Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 2. Application to simulated and glass spectral data. Anal Chem. 1988;60(11):1202-1208. DOI: 10.1021/ac00162a021.10.1021/ac00162a021
  18. [18] Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 1967;62(318):399-402. DOI: 10.1080/01621459.1967.10482916.10.1080/01621459.1967.10482916
  19. [19] Martens H, Nielsen JP, Engelsen SB. Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem. 2003;75(3):394-404. DOI: 10.1021/ac020194w.10.1021/ac020194w
  20. [20] Dhanoa M, Lister S, Sanderson R, Barnes R. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J Near Infrared Spectrosc. 1994;2(1):42-47. DOI: 10.1255/jnirs.30.10.1255/jnirs.30
  21. [21] Inoue Y, Sakaiya E, Zhu Y, Takahashi W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens Environ. 2012;126:210-221. DOI: 10.1016/j.rse.2012.08.026.10.1016/j.rse.2012.08.026
  22. [22] Vašát R, Kodešová R, Borůvka L, Klement A, Jakšík O, Gholizadeh A. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma. 2014;232:208-218. DOI: 10.1016/j.geoderma.2014.05.012.10.1016/j.geoderma.2014.05.012
  23. [23] Wang G, Yin S. Quality-related fault detection approach based on orthogonal signal correction and modified PLS. IEEE Trans Industr Informatics. 2015;11(2):398-405. DOI: 10.1109/TII.2015.2396853.10.1109/TII.2015.2396853
  24. [24] Eastment H, Krzanowski W. Cross-validatory choice of the number of components from a principal component analysis. Technometrics. 1982;24(1):73-77. DOI: 10.1080/00401706.1982.10487712.10.1080/00401706.1982.10487712
  25. [25] Gomez C, Lagacherie P, Coulouma G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma. 2008;148(2):141-148. DOI: 10.1016/j.geoderma.2008.09.016.10.1016/j.geoderma.2008.09.016
  26. [26] Whiting ML, Li L, Ustin SL. Predicting water content using Gaussian model on soil spectra. Remote Sens Environ. 2004;89(4):535-552. DOI: 10.1016/j.rse.2003.11.009.10.1016/j.rse.2003.11.009
  27. [27] Elmasry G, Wang N, Vigneault C, Qiao J, Elsayed A. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT-Food Science and Technology. 2008;41(2):337-345. DOI: 10.1016/j.lwt.2007.02.022.10.1016/j.lwt.2007.02.022
  28. [28] Griffin JL. Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr Opin Chem Biol. 2003;7(5):648-654. DOI: 10.1016/j.cbpa.2003.08.008.10.1016/j.cbpa.2003.08.008
  29. [29] Lin W-S, Yang C-M, Kuo B-J. Classifying cultivars of rice (Oryza sativa L.) based on corrected canopy reflectance spectra data using the orthogonal projections to latent structures (O-PLS) method. Chemometr Intell Lab. 2012;115:25-36. DOI: 10.1016/j.chemolab.2012.04.005.10.1016/j.chemolab.2012.04.005
  30. [30] Tapp HS, Kemsley EK. Notes on the practical utility of OPLS. TrAC Trends Anal Chem. 2009;28(11):1322-1327. DOI: 10.1016/j.trac.2009.08.006.10.1016/j.trac.2009.08.006
  31. [31] Cho MA, Skidmore A, Corsi F, Van Wieren SE, Sobhan I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Observ Geoinformat. 2007;9(4):414-424. DOI: 10.1016/j.jag.2007.02.001.10.1016/j.jag.2007.02.001
DOI: https://doi.org/10.1515/eces-2016-0008 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 117 - 130
Published on: Apr 9, 2016
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Wen-Zhi Zeng, Jie-Sheng Huang, Chi Xu, Tao Ma, Jing-Wei Wu, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.