Have a personal or library account? Click to login
The Use Of Pb-210 Isotope As An Indicator Of Pollutants’ Migration In The Environment Cover

The Use Of Pb-210 Isotope As An Indicator Of Pollutants’ Migration In The Environment

Open Access
|Oct 2015

References

  1. [1] Dołhańczuk-Śródka A, Ziembik Z, Kusza G. Wykorzystanie metod statystycznych do opisu migracji izotopów promieniotwórczych w środowisku przyrodniczym. (The use of statistical methods to describe the migration of radionuclides in the environment). Warszawa: WNT; 2015.
  2. [2] Kubica B, Szarlowicz K, Stobinski M, Skiba S, Reczynski W, Gołas J. Concentrations of 137Cs and 40K radionuclides and some heavy metals in soil samples from the eastern part of the Main Ridge of the Flysch Carpathians. J Radioanal Nucl Chem. 2014;299(3):1313-1320. DOI: 10.1007/s10967-013-2890-3.10.1007/s10967-013-2890-3451458726224960
  3. [3] Szabó KZ, Udvardi B, Horváth Á, Bakacsi Z, Pásztor L, Szabó J, et al. Cesium-137 concentration of soils in Pest County, Hungary. J Environ Radioact. 2012;110:38-45. DOI: 10.1016/j.jenvrad.2012.01.023.10.1016/j.jenvrad.2012.01.02322343500
  4. [4] Dołhańczuk-Śródka A, Majcherczyk T, Smuda M, Ziembik Z, Wacławek M. Spatial 137Cs distribution in forest soil. Nukleonika. 2006;51(2):S69-S79. http://www.ichtj.waw.pl/ichtj/nukleon/back/full/vol51_2006/v51s2p69f.pdf.
  5. [5] Kubica B, Skiba S, Drewnik M, Stobiński M, Kubica M, Golas J, et al. Radionuclides Cs-137 and K-40 in the soils of the Tatra National Park (TPN, Poland). Nukleonika. 2010;55(3):377-386. http://www.nukleonika.pl/www/back/full/vol55_2010/v55n3p377f.pdf,
  6. [6] Payne T., Hatje V, Itakura T, McOrist G, Russell R. Radionuclide applications in laboratory studies of environmental surface reactions. J Environ Radioact. 2004;76(1-2):237-251. DOI: 10.1016/j.jenvrad.2004.03.029.10.1016/j.jenvrad.2004.03.02915245851
  7. [7] Lecroart P, Maire O, Schmidt S, Grémare A, Abrahams PW, Meysman FJR. Bioturbation, short-lived radioisotopes, and the tracer-dependence of biodiffusion coefficients. Geochim Cosmochim Acta. 2010;74(21):6049-6063. DOI: 10.1016/j.gca.2010.06.010.10.1016/j.gca.2010.06.010
  8. [8] Medich DC, Abayomi K, Boudreau BP, Meysman FJR. Steady-state tracer dynamics in a lattice-automaton model of bioturbation. Geochim Cosmochim Acta. 2006;70(23):5855-5867. DOI: 10.1016/j.gca.2006.03.026.10.1016/j.gca.2006.03.026
  9. [9] Johannessen SC, Macdonald RW. There is no 1954 in that core! Interpreting sedimentation rates and contaminant trends in marine sediment cores. Mar Pollut Bull. 2012;64(4):675-678. DOI: 10.1016/j.marpolbul.2012.01.026.10.1016/j.marpolbul.2012.01.02622336092
  10. [10] Xue B, Yao S. Recent sedimentation rates in lakes in lower Yangtze River basin. Quat Int. 2011;244(2):248-253. DOI: 10.1016/j.quaint.2011.01.003.10.1016/j.quaint.2011.01.003
  11. [11] Xu L, Wu F, Wan G, Liao H, Zhao X, Xing B. Relationship between 210Pbex activity and sedimentary organic carbon in sediments of 3 Chinese lakes. Environ Pollut. 2011;159(12):3462-3467. DOI: 10.1016/j.envpol.2011.08.020.10.1016/j.envpol.2011.08.02021889244
  12. [12] Barlas Simsek F, Cagatay MN. Geochronology of lake sediments using 210Pb with double energetic window method by LSC: An application to Lake Van. Appl Radiat Isot. 2014;93:126-133. DOI: 10.1016/j.apradiso.2014.01.028.10.1016/j.apradiso.2014.01.02824593926
  13. [13] Szarlowicz K, Kubica B. 137Cs and 210Pb radionuclides in open and closed water ecosystems. J Radioanal Nucl Chem. 2014;299(3):1321-1328. DOI: 10.1007/s10967-013-2864-5.10.1007/s10967-013-2864-5
  14. [14] Szarłowicz K, Reczyński W, Golas J, Kościelniak P, Skiba M, Kubica B. Sorption of Cs-137 and Pb on sediment samples from a drinking water reservoir. Pol J Environ Stud. 2011;20(5):1305-1312. http://www.pjoes.com/pdf/20.5/Pol.J.Environ.Stud.Vol.20.No.5.1305-1312.pdf.
  15. [15] Gäggeler H, Gunter HR, Rössler E, Oeschger H, Schotterrer U. 210Pb - dating of cold Alpine firn/ice cores from Colle Gnifetti, Switzerland. J Glaciol. 1983;29:165-177. http://www.igsoc.org:8080/journal/29/101/igs_journal_vol29_issue101_pg165-177.pdf.10.3189/S0022143000005220
  16. [16] von Gunten HR, Moser RN. How reliable is the 210Pb dating method? Old and new results from Switzerland. J Paleolimnol. 1993;9(2):161-178. DOI: 10.1007/BF00677518.10.1007/BF00677518
  17. [17] Walling DE, He Q. Use of fallout 137Cs in investigations of overbank sediment deposition on river floodplains. CATENA. 1997;29(3-4):263-282. DOI: 10.1016/S0341-8162(96)00072-0.10.1016/S0341-8162(96)00072-0
  18. [18] Walling D., He Q. The spatial variability of overbank sedimentation on river floodplains. Geomorphology. 1998;24(2-3):209-23. DOI: 10.1016/S0169-555X(98)00017-8.10.1016/S0169-555X(98)00017-8
  19. [19] Zhang X, Walling DE. Characterizing land surface erosion from cesium-137 profiles in lake and reservoir sediments. J Environ Qual. 2005;34(2):514-523. DOI: 10.2134/jeq2005.0514.10.2134/jeq2005.051415758104
  20. [20] Ueda S, Ohtsuka Y, Kondo K, Hisamatsu S. Inventories of 239+240Pu, 137Cs, and excess 210Pb in sediments from freshwater and brackish lakes in Rokkasho, Japan, adjacent to a spent nuclear fuel reprocessing plant. J Environ Radioact. 2009;100(10):835-840. DOI: 10.1016/j.jenvrad.2009.06.008.10.1016/j.jenvrad.2009.06.00819586693
  21. [21] An J, Zheng F, Wang B. Using 137Cs technique to investigate the spatial distribution of erosion and deposition regimes for a small catchment in the black soil region, Northeast China. CATENA. 2014;123:243-251. DOI: 10.1016/j.catena.2014.08.009.10.1016/j.catena.2014.08.009
  22. [22] Zhang X, Long Y, He X, Fu J, Zhang Y. A simplified 137Cs transport model for estimating erosion rates in undisturbed soil. J Environ Radioact. 2008;99(8):1242-1246. DOI: 10.1016/j.jenvrad.2008.03.001.10.1016/j.jenvrad.2008.03.00118433951
  23. [23] Zhang CL, Yang S, Pan XH, Zhang JQ. Estimation of farmland soil wind erosion using RTK GPS measurements and the 137Cs technique: A case study in Kangbao County, Hebei province, northern China. Soil Tillage Res. 2011;112(2):140-148. DOI: 10.1016/j.still.2010.12.003.10.1016/j.still.2010.12.003
  24. [24] Benmansour M, Mabit L, Nouira A, Moussadek R, Bouksirate H, Duchemin M, et al. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex. J Environ Radioact. 2013;115:97-106. DOI: 10.1016/j.jenvrad.2012.07.013.10.1016/j.jenvrad.2012.07.01322898495
  25. [25] Kirchner G. Establishing reference inventories of 137Cs for soil erosion studies: Methodological aspects. Geoderma. 2013;211-212:107-115. DOI: 10.1016/j.geoderma.2013.07.01110.1016/j.geoderma.2013.07.011
  26. [26] Menéndez-Duarte R, Fernández S, Soto J. The application of 137Cs to post-fire erosion in north-west Spain. Geoderma. 2009;150(1-2):54-63. DOI: 10.1016/j.geoderma.2009.01.012.10.1016/j.geoderma.2009.01.012
  27. [27] Ritchie JC, McHenry JR. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J Environ Qual. 1990;19(2):215. DOI: 10.2134/jeq1990.00472425001900020006x.10.2134/jeq1990.00472425001900020006x
  28. [28] Porȩba GJ, Bluszcz A. Influence of the parameters of models used to calculate soil erosion based on 137Cs tracer. Geochronometria. 2009;32(1):21-27. http://www.geochronometria.pl/pdf/geo_32/Geo32_03.pdf.10.2478/v10003-008-0026-5
  29. [29] Kelly RP, Moran SB. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol Oceanogr. 2002;47(6):1796-1807. http://aslo.info/lo/toc/vol_47/issue_6/1796.pdf.10.4319/lo.2002.47.6.1796
  30. [30] Patrut A, von Reden KF, Van Pelt R, Mayne DH, Lowy DA, Margineanu D. Age determination of large live trees with inner cavities: radiocarbon dating of Platland tree, a giant African baobab. Ann For Sci. 2011;68(5):993-1003. DOI: 10.1007/s13595-011-0107-x.10.1007/s13595-011-0107-x
  31. [31] Kolář T, Rybníček M. Dendrochronological and radiocarbon dating of subfossil wood from the Morava River basin. Geochronometria. 2011;38(2):155-161. DOI: 10.2478/s13386-011-0021-x.10.2478/s13386-011-0021-x
  32. [32] Zazzo A, Saliège JF. Radiocarbon dating of biological apatites: A review. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;310(1-2):52-61. DOI: 10.1016/j.palaeo.2010.12.004.10.1016/j.palaeo.2010.12.004
  33. [33] Terry M, Steelman KL, Guilderson T, Dering P, Rowe MW. Lower Pecos and Coahuila peyote: new radiocarbon dates. J Archaeol Sci. 2006;33(7):1017-1021. DOI: 10.1016/j.jas.2005.11.008.10.1016/j.jas.2005.11.008
  34. [34] Richter D, Tostevin G, Škrdla P, Davies W. New radiometric ages for the Early Upper Palaeolithic type locality of Brno-Bohunice (Czech Republic): comparison of OSL, IRSL, TL and 14C dating results. J Archaeol Sci. 2009;36(3):708-720. DOI: 10.1016/j.jas.2008.10.017.10.1016/j.jas.2008.10.017
  35. [35] Jöris O, Street M. At the end of the 14C time scale-the Middle to Upper Paleolithic record of western Eurasia. J Hum Evol. 2008;55(5):782-802. DOI: 10.1016/j.jhevol.2008.04.002.10.1016/j.jhevol.2008.04.00218930513
  36. [36] Boaretto E, Poduska KM. Materials science challenges in radiocarbon dating: the case of archaeological plasters. JOM. 2013;65(4):481-488. DOI: 10.1007/s11837-013-0573-8.10.1007/s11837-013-0573-8
  37. [37] Clauer N. The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals. Chem Geol. 2013;354:163-185. DOI: 10.1016/j.chemgeo.2013.05.030.10.1016/j.chemgeo.2013.05.030
  38. [38] Piñero García F, Ferro García MA, Azahra M. 7Be behaviour in the atmosphere of the city of Granada January 2005 to December 2009. Atmos Environ. 2012;47:84-91. DOI: 10.1016/j.atmosenv.2011.11.034.10.1016/j.atmosenv.2011.11.034
  39. [39] Dueñas C, Fernández MC, Cañete S, Pérez M. 7Be to 210Pb concentration ratio in ground level air in Málaga (36.7°N, 4.5°W). Atmospheric Res. 2009;92(1):49-57. DOI: 10.1016/j.atmosres.2008.08.012.10.1016/j.atmosres.2008.08.012
  40. [40] Yoshimori M. Beryllium 7 radionucleide as a tracer of vertical air mass transport in the troposphere. Adv Space Res. 2005;36(5):828-832. DOI: 10.1016/j.asr.2005.04.088.10.1016/j.asr.2005.04.088
  41. [41] Pacini AA, Usoskin IG, Evangelista H, Echer E, de Paula R. Cosmogenic isotope 7Be: A case study of depositional processes in Rio de Janeiro in 2008-2009. Adv Space Res. 2011;48(5):811-818. DOI: 10.1016/j.asr.2011.04.035.10.1016/j.asr.2011.04.035
  42. [42] Leppänen A-P, Pacini AA, Usoskin IG, Aldahan A, Echer E, Evangelista H, et al. Cosmogenic 7Be in air: A complex mixture of production and transport. J Atmospheric Sol-Terr Phys. 2010;72(13):1036-1043. DOI: 10.1016/j.jastp.2010.06.006.10.1016/j.jastp.2010.06.006
  43. [43] Lozano RL, Hernández-Ceballos MA, Rodrigo JF, San Miguel EG, Casas-Ruiz M, García-Tenorio R, et al. Mesoscale behavior of 7Be and 210Pb in superficial air along the Gulf of Cadiz (south of Iberian Peninsula). Atmos Environ. 2013;80:75-84. DOI: 10.1016/j.atmosenv.2013.07.050.10.1016/j.atmosenv.2013.07.050
  44. [44] Baskaran M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A review. J Environ Radioact. 2011;102(5):500-513. DOI: 10.1016/j.jenvrad.2010.10.007.10.1016/j.jenvrad.2010.10.00721093126
  45. [45] Dueñas C, Fernández MC, Carretero J, Liger E, Cañete S. Deposition velocities and washout ratios on a coastal site (southeastern Spain) calculated from 7Be and 210Pb measurements. Atmos Environ. 2005;39(36):6897-6908. DOI: 10.1016/j.atmosenv.2005.08.008.10.1016/j.atmosenv.2005.08.008
  46. [46] Papastefanou C. Residence time of tropospheric aerosols in association with radioactive nuclides. Appl Radiat Isot. 2006;64(1):93-100. DOI: 10.1016/j.apradiso.2005.07.006.10.1016/j.apradiso.2005.07.00616122930
  47. [47] Almgren S, Isaksson M. Vertical migration studies of 137cs from nuclear weapons fallout and the Chernobyl accident. J Environ Radioact. 2006;91(1-2):90-102. DOI: 10.1016/j.jenvrad.2006.08.008.10.1016/j.jenvrad.2006.08.00817030348
  48. [48] Hiroaki K, Onda Y, Teramage M. Depth Distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-Ichi Nuclear Power Plant accident. J Environ Radioact. 2012;111:59-64. DOI: 10.1016/j.jenvrad.2011.10.003.10.1016/j.jenvrad.2011.10.00322029969
  49. [49] BNL. National Nuclear Data Center. 2014. http://www.nndc.bnl.gov/.
  50. [50] Aitchison J. The Statistical Analysis of Compositional Data. Caldwell, New Yersey: The Blackburn Press, 2003.
  51. [51] Pawlowsky-Glahn V, Buccianti A. Compositional Data Analysis. Theory and Applications. United Kingdom: John Wiley & Sons, Ltd. 2011.10.1002/9781119976462
  52. [52] Aitchison J, Greenacre M. Biplots of Compositional Data. J R Stat Soc: Series C (Appl Stat). 2002;51(4):375-92. DOI: 10.1111/1467-9876.00275.10.1111/1467-9876.00275
  53. [53] Filzmoser P, Hron K, Reimann C. Principal component analysis for compositional data with outliers. Environmetrics. 2009;20(6):621-632. DOI: 10.1002/env.966.10.1002/env.966
  54. [54] Dołhańczuk-Śródka A, Ziembik Z, Kříž J, Hyšplerova L, Wacławek M. Pb-210 Isotope as a pollutant emission indicator. Ecol Chem Eng S. 2015;22(1):73-81. DOI: 10.1515/eces-2015-0004.10.1515/eces-2015-0004
DOI: https://doi.org/10.1515/eces-2015-0020 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 379 - 388
Published on: Oct 5, 2015
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Agnieszka Dołhańczuk-Śródka, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.