Have a personal or library account? Click to login
Effect and Mechanism of High-Pressure Processing: A Case Study of Flue-Cured Tobacco Cover

Effect and Mechanism of High-Pressure Processing: A Case Study of Flue-Cured Tobacco

Open Access
|Oct 2017

References

  1. 1. Defaye, A.B., D.A. Ledward, D.B. MacDougall, and R.F. Tester: Renaturation of Metmyoglobin Subjected to High Isostatic Pressure; Food Chem. 52 (1995) 19–22. DOI: 10.1016/0308-8146(94)P4175-F10.1016/0308-8146(94)P4175-
  2. 2. Hite, B.H.: The Effect of High Pressure in the Preservation of Milk; West Virginia Agricultural Experimental Station Bulletin 58 (1899) 15–35. Available at: https://archive.org/details/effectofpressure58hite (accessed August 2017)
  3. 3. Evert-Arriagada, K., M.M. Hernández-Herrero, B. Guamis, and A.J. Trujillo: Commercial Application of High-Pressure Processing for Increasing Starter-Free Fresh Cheese Shelf-Life; LWT - Food Sci. Technol. 55 (2014) 498–505. DOI: 10.1016/j.lwt.2013.10.03010.1016/j.lwt.2013.10.030
  4. 4. Maldonado, J.A., D.W. Schaffner, A.M. Cuitiño, and M.V. Karwe: In Situ Studies of Microbial Inactivation During High Pressure Processing; High Press. Res. 36 (2016) 79–89. DOI: 10.1080/08957959.2015.111188710.1080/08957959.2015.1111887
  5. 5. Pietrzak, D., A. Cegiełka, M. Fonberg-Broczek, and M. Ziarno: Effects of High Pressure Treatment on the Quality of Chicken Patties; High Press. Res. 31 (2011) 350–357. DOI: 10.1080/08957959.2011.55250310.1080/08957959.2011.552503
  6. 6. Houška, M., J. Strohalm, K. Kocurová, J. Totušek, D. Lefnerová, J. Tříska, N. Vrchotová, V. Fiedrleová, M. Holasova, D. Gabrovská, and I. Paulíčková: High Pressure and Foods—Fruit/Vegetable Juices; J. Food Eng. 77 (2006) 386–398. DOI: 10.1016/j.jfoodeng.2005.07.00310.1016/j.jfoodeng.2005.07.003
  7. 7. Huang, R., M. Ye, X. Li, L. Ji, M. Karwe, and H. Chen: Evaluation of High Hydrostatic Pressure Inactivation of Human Norovirus on Strawberries, Blueberries, Raspberries and in Their Purees; Int. J. Food Microbiol. 223 (2016) 17–24. DOI: 10.1016/j.ijfoodmicro.2016.02.00210.1016/j.ijfoodmicro.2016.02.00226874862
  8. 8. Buckow, R., J. Bingham, S. Daglas, S. Lowther, R. Amos-Ritchie, and D. Middleton: High Pressure Inactivation of Selected Avian Viral Pathogens in Chicken Meat Homogenate; Food Control 73 (2017) 215–222. DOI: 10.1016/j.foodcont.2016.08.00310.1016/j.foodcont.2016.08.003
  9. 9. Yang, B., Y. Shi, X. Xia, M. Xi, X. Wang, B. Ji, and J. Meng: Inactivation of Foodborne Pathogens in Raw Milk Using High Hydrostatic Pressure; Food Control 28 (2012) 273–278. DOI: 10.1016/j.foodcont.2012.04.03010.1016/j.foodcont.2012.04.030
  10. 10. Zhang, Y., X. Liu, Y. Wang, F. Zhao, Z. Sun, and X. Liao: Quality Comparison of Carrot Juices Processed by High-Pressure Processing and High-Temperature Short-Time Processing; Innov. Food Sci. Emerg. Technol. 33 (2016) 135–144. DOI: 10.1016/j.ifset.2015.10.01210.1016/j.ifset.2015.10.012
  11. 11. Zetzl, C., K. Gairola, C. Kirsch, L. Perez-Cantu, and I. Smirnova: High Pressure Processes in Biorefineries; Chem. Ing. Tech. 83 (2011) 1016–1025. DOI: 10.1002/cite.20110002510.1002/cite.201100025
  12. 12. Huang, H.-W., C.-P. Hsu, B.B. Yang, and C.-Y. Wang: Advances in the Extraction of Natural Ingredients by High Pressure Extraction Technology; Trends Food Sci. Technol. 33 (2013) 54–62. DOI: 10.1016/j.tifs.2013.07.00110.1016/j.tifs.2013.07.001
  13. 13. Rastogi, N.K, K.S. Raghavarao, V.M. Balasubramaniam, K. Niranjan, and D. Knorr: Opportunities and Challenges in High Pressure Processing of Foods; Crit. Rev. Food Sci. Nutr. 47 (2007) 69–112. DOI: 10.1080/1040839060062642010.1080/1040839060062642017364696
  14. 14. Khan N.M., T.H. Mu, H.N. Sun, M. Zhang, and J.W. Chen: Effects of High Hydrostatic Pressure on Secondary Structure and Emulsifying Behavior of Sweet Potato Protein; High Pressure Res. 35 (2015) 189–202. DOI: 10.1080/08957959.2015.100501310.1080/08957959.2015.1005013
  15. 15. Tian, Y., J. Huang, T. Xie, L. Huang, W. Zhuang, Y. Zheng, and B. Zheng: Oenological Characteristics, Amino Acids and Volatile Profiles of Hongqu Rice Wines During Pottery Storage: Effects of High Hydrostatic Pressure Processing; Food Chem. 203 (2016) 456–464. DOI: 10.1016/j.foodchem.2016.02.11610.1016/j.foodchem.2016.02.11626948638
  16. 16. Boluda-Aguilar, M., A. Taboada-Rodríguez, A. López-Gómez, F. Marín-Iniesta, and G.V. Barbosa-Cánovas: Quick Cooking Rice by High Hydrostatic Pressure Processing; LWT Food Sci. Technol. 51 (2013) 196–204. DOI: 10.1016/j.lwt.2012.09.02110.1016/j.lwt.2012.09.021
  17. 17. Wennberg, M. and M. Nyman: On the Possibility of Using High Pressure Treatment to Modify Physico-Chemical Properties of Dietary Fibre in White Cabbage (Brassica Oleracea var. Capitata); Innov. Food Sci. Emerg. Technol. 5 (2004) 171–177. DOI: 10.1016/j.ifset.2004.02.00210.1016/j.ifset.2004.02.002
  18. 18. Mateos-Aparicio, I., C. Mateos-Peinado, and P. Rupérez: High Hydrostatic Pressure Improves the Functionality of Dietary Fibre in Okara By-Product From Soybean; Innov. Food Sci. Emerg. Technol. 11 (2010) 445–450. DOI: 10.1016/j.ifset.2010.02.00310.1016/j.ifset.2010.02.003
  19. 19. Cappa, C., M. Lucisano, G.V. Barbosa-Cánovas, and M. Mariotti: Physical and Structural Changes Induced by High Pressure on Corn Starch, Rice Flour and Waxy Rice Flour; Food Res. Int. 85 (2016) 95–103. DOI: 10.1016/j.foodres.2016.04.01810.1016/j.foodres.2016.04.01829544857
  20. 20. Santos, M.D., J.A. Saraiva, M. Teresa, and S.R. Gomes: Pasting of Maize and Rice Starch After High Pressure Processing: Studies Based on an Acoustic Wave Sensor; Sens. Actuator B Chem. 209 (2015) 323–327. DOI: 10.1016/j.snb.2014.11.11010.1016/j.snb.2014.11.110
  21. 21. Cappa, C., G.V. Barbosa-Cánovas, M. Lucisano, and M. Mariotti: Effect of High Pressure Processing on the Baking Aptitude of Corn Starch and Rice Flour; LWT Food Sci. Technol. 73 (2016) 20–27. DOI: 10.1016/j.lwt.2016.05.02810.1016/j.lwt.2016.05.028
  22. 22. Jolie, R.P., S. Christiaens, A. De Roeck, I. Fraeye, K. Houben, S. Van Buggenhout, A.M. Van Loey, and M.E. Hendrickx: Pectin Conversions Under High Pressure: Implications for the Structure-Related Quality Characteristics of Plant-Based Foods; Trends Food Sci. Technol. 24 (2012) 103–118. DOI: 10.1016/j.tifs.2011.11.00310.1016/j.tifs.2011.11.003
  23. 23. Tabilo-Munizaga, G., T.A. Gordon, R. Villalobos-Carvajal, L. Moreno-Osorio, F.N. Salazar, M. Pérez-Won, and S. Acuña: Effects of High Hydrostatic Pressure (HHP) on the Protein Structure and Thermal Stability of Sauvignon Blanc Wine; Food Chem. 155 (2014) 214–220. DOI: 10.1016/j.foodchem.2014.01.05110.1016/j.foodchem.2014.01.051
  24. 24. Zhang, Z., Y. Yang, P. Zhou, X. Zhang, and J. Wang: Effects of High Pressure Modification on Conformation and Gelation Properties of Myofibrillar Protein; Food Chem. 217 (2017) 678–686. DOI: 10.1016/j.foodchem.2016.09.04010.1016/j.foodchem.2016.09.040
  25. 25. Savadkoohi, S. and S. Kasapis: High Pressure Effects on the Structural Functionality of Condensed Globular-Protein Matrices; Int. J. Biol. Macromol. 88 (2016) 433–442. DOI: 10.1016/j.ijbiomac.2016.04.01210.1016/j.ijbiomac.2016.04.012
  26. 26. Oey, I., M. Lille, A. Van Loey, and M. Hendrickx: Effect of High-Pressure Processing on Colour, Texture and Flavour of Fruit- and Vegetable-Based Food Products: A Review; Trends Food Sci. Technol. 19 (2008) 320–328. DOI: 10.1016/j.tifs.2008.04.00110.1016/j.tifs.2008.04.001
  27. 27. Kim, K.W., Y.-T. Kim, M. Kim, B.-S. Noh, and W.-S. Choi: Effect of High Hydrostatic Pressure (HHP) Treatment on Flavor, Physicochemical Properties and Biological Functionalities of Garlic; LWT Food Sci. Technol. 55 (2014) 347–354. DOI: 10.1016/j.lwt.2013.08.02710.1016/j.lwt.2013.08.027
  28. 28. Liu, S., Q. Xu, X. Li, Y. Wang, J. Zhu, C. Ning, X. Chang, and X. Meng: Effects of High Hydrostatic Pressure on Physicochemical Properties, Enzymes Activity, and Antioxidant Capacities of Anthocyanins Extracts of Wild Lonicera Caerulea Berry; Innov. Food Sci. Emerg. Technol. 36 (2016) 48–58. DOI: 10.1016/j.ifset.2016.06.00110.1016/j.ifset.2016.06.001
  29. 29. Chakraborty, S., N. Kaushik, P.S. Rao, and H.N. Mishra: High-Pressure Inactivation of Enzymes: A Review on its Recent Applications on Fruit Purees and Juices; Compr. Rev. Food Sci. Food Saf. 13 (2014) 578–596. DOI: 10.1111/1541-4337.1207110.1111/1541-4337.12071
  30. 30. Mao, D., J. Zhang, and G. Yang: Effects of Moisture Content on Flavor Components of Flue-Cured Tobacco Under Ultra High Pressure Treatment; Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering; 23 (2007) 211–216.
  31. 31. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - The Sensory Evaluation Methods; Y.T. 138-1998, Beijing China Standard Press, Beijing, China, 1998.
  32. 32. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - Determination of Water Soluble Sugars - Continuous Flow Method; Y.T. 159-2002, Beijing China Standard Press, Beijing, China, 2002.
  33. 33. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - Determination of Total Alkaloids - Continuous Flow Method; Y.T. 160-2002, Beijing China Standard Press, Beijing, China, 2002.
  34. 34. Tobacco Industry Standard of People’s Republic of China: Tobacco and Tobacco Products - Determination of Total Nitrogen - Continuous Flow Method; Y.T. 161-2002, Beijing China Standard Press, Beijing, China, 2002.
  35. 35. Tobacco Industry Standard of People’s Republic of China: Determination of Apparent Density, True Density and Inner Pore Volume of Cut Tobacco; Y.T. 473-2013, Beijing China Standand Press, Beijing, China, 2013.
  36. 36. Hendrickx, M., L. Ludikhuyze, I. Van den Broeck, and C. Weemaes: Effects of High Pressure on Enzymes Related to Food Quality; Trends Food Sci. Technol. 9 (1998) 197–203.10.1016/S0924-2244(98)00039-9
  37. 37. Schroeder, J.I., G.J. Allen, V. Hugouvieux, J.M. Kwak, and D. Waner: Guard Cell Signal Transduction; Ann. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 627–658. DOI: 10.1146/annurev.arplant.52.1.62710.1146/annurev.arplant.52.1.62711337411
  38. 38. Melotto, M., W. Underwood, J. Koczan, K. Nomura, and S.Y. He: Plant Stomata Function in Innate Immunity Against Bacterial Invasion; Cell 126 (2006) 969–980. DOI: 10.1016/j.cell.2006.06.05410.1016/j.cell.2006.06.05416959575
  39. 39. Fan, L.M., Z. Zhao, and S.M. Assmann: Guard Cells: A Dynamic Signaling Model; Curr. Opin. Plant Biol. 7 (2004) 537–546. DOI: 10.1016/j.pbi.2004.07.00910.1016/j.pbi.2004.07.00915337096
  40. 40. Brodersen, C.R. and A.B. Roddy: New Frontiers in the Three-Dimensional Visualization of Plant Structure and Function; Am. J. Bot. 103 (2016) 184–188. DOI: 10.3732/ajb.150053210.3732/ajb.150053226865119
  41. 41. Kuroki, S., S. Oshita, I. Sotome, Y. Kawagoe, and Y. Seo: Visualization of 3-D Network of Gas-Filled Intercellular Spaces in Cucumber Fruit after Harvest; Postharvest Biol. Technol. 33 (2004) 255–262. DOI: 10.1016/j.postharvbio.2004.04.00210.1016/j.postharvbio.2004.04.002
  42. 42. Bigourd, D., A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali: Multiple Component Analysis of Cigarette Smoke Using THz Spectroscopy, Comparison with Standard Chemical Analytical Methods; Appl. Phys. B 86 (2007) 579–586. DOI: 10.1007/s00340-006-2495-410.1007/s00340-006-2495-4
  43. 43. Png, G.M., R.J. Falconer, B.M. Fischer, H.A. Zakaria, S.P. Mickan, A.P. Middelberg, and D. Abbott: Terahertz Spectroscopic Differentiation of Microstructures in Protein Gels; Opt. Express 17 (2009) 13102–13115. DOI: 10.1364/OE.17.01310210.1364/OE.17.01310219654715
  44. 44. Su, T.-F., X.-F. Jia, G.-Z. Zhao, P. Han, Y.-J. Wang, Y. Li, B. Zhou, C.-P. Song, J.-F. Chang, and C.R. Gong: Characterization of Original and Expanded Leaf-Roots of Tobacco by Terahertz Spectroscopy and X-Ray Microanalysis; Mater. Lett. 62 (2008) 277–2782. DOI: 10.1016/j.matlet.2008.01.04310.1016/j.matlet.2008.01.043
  45. 45. Fang, X., H.X. Wei, M. Kamran, J.Y. Ma, H.Y. Zhao, X.F. Han, and Qiu: Surface Plasmon Polaritons Assisted Diffraction in Metal Films with Subwave-length Hole Array; J. Phys. Chem. Solids 69 (2008) 3093–3095. DOI: 10.1016/j.jpcs.2008.06.09910.1016/j.jpcs.2008.06.099
  46. 46. Várhegyi, G., Z. Czégény, E. Jakab, K. McAdam, and C. Liu: Tobacco Pyrolysis. Kinetic Evaluation of Thermogravimetric–Mass Spectrometric Experiments; J. Anal. Appl. Pyrolysis 86 (2009) 310–322. DOI: 10.1016/j.jaap.2009.08.00810.1016/j.jaap.2009.08.008
  47. 47. Czégény, Z., M. Blazsó, G. Várhegyi, E. Jakab, C. Liu, and L. Nappi: Formation of Selected Toxicants from Tobacco under Different Pyrolysis Conditions; J. Anal. Appl. Pyrolysis 85 (2009) 47–53. DOI: 10.1016/j.jaap.2008.10.00110.1016/j.jaap.2008.10.001
  48. 48. Senneca, O., R. Chirone, P. Salatino, and L. Nappi: Patterns and Kinetics of Pyrolysis of Tobacco under Inert and Oxidative Conditions; J. Anal. Appl. Pyrolysis 79 (2007) 227–233. DOI: 10.1016/j.jaap.2006.12.01110.1016/j.jaap.2006.12.011
  49. 49. Qi, X., Q. Li, H. Zhang, and H. Xin: Thermodynamic Characteristics of Coal Reaction Under Low Oxygen Concentration Conditions; J. Energy Inst. 90 (2017) 544–555. DOI: 10.1016/j.joei.2016.05.00710.1016/j.joei.2016.05.007
  50. 50. Mitsui, K., F. David, E. Dumont, N. Ochiai, H. Tamura, and P. Sandra: LC Fractionation Followed by Pyrolysis GC-MS for the In-Depth Study of Aroma Compounds Formed During Tobacco Combustion; J. Anal. Appl. Pyrolysis 116 (2015) 68–74. DOI: 10.1016/j.jaap.2015.10.00410.1016/j.jaap.2015.10.004
  51. 51. Baker, R.R. and L.J. Bishop: The Pyrolysis of Tobacco Ingredients; J. Anal. Appl. Pyrolysis 71 (2004) 223–311. DOI: 10.1016/S0165-2370(03)00090-110.1016/S0165-2370(03)00090-1
  52. 52. Anca-Couce, A.: Reaction Mechanisms and Multi-Scale Modelling of Lignocellulosic Biomass Pyrolysis; Prog. Energy Combust. Sci. 53 (2016) 41–79. DOI: 10.1016/j.pecs.2015.10.00210.1016/j.pecs.2015.10.002
  53. 53. Tripathi, M., J.N. Sahu, and P. Ganesan: Effect of Process Parameters on Production of Biochar from Biomass Waste Through Pyrolysis: A Review; Renew. Sust. Energy Rev. 55 (2016) 467–481. DOI: 10.1016/j.rser.2015.10.12210.1016/j.rser.2015.10.122
  54. 54. Sharma, A., V. Pareek, and D. Zhang: Biomass Pyrolysis - A Review of Modelling, Process Parameters and Catalytic Studies; Renew. Sust. Energy Rev. 50 (2015) 1081–1096. DOI: 10.1016/j.rser.2015.04.19310.1016/j.rser.2015.04.193
Language: English
Page range: 168 - 181
Submitted on: May 2, 2017
Accepted on: Sep 7, 2017
Published on: Oct 4, 2017
Published by: Institut für Tabakforschung GmbH
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Chao Tan, Dongsheng Yang, Saibo Yu, Ke Li, Haifeng Tan, Hongmei Fan, Shitai Wang, Qian Chen, Qi Liu, Yu Zhao, Xuemin Guo, Xinxin Jia, Yong Jin, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.