Have a personal or library account? Click to login
A Simultaneous Analytical Method to Profile Non-Volatile Components with Low Polarity Elucidating Differences Between Tobacco Leaves Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Detection Cover

A Simultaneous Analytical Method to Profile Non-Volatile Components with Low Polarity Elucidating Differences Between Tobacco Leaves Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Detection

By: Naoyuki Ishida  
Open Access
|May 2016

References

  1. 1. Davis, D. and M.T. Nielsen: Tobacco: Production, Chemistry and Technology; edited by D. Davis and M.T. Nielsen, Blackwell Science, Oxford, UK,1999; ISBN-13: 978-0632047918.
  2. 2. Voges, E.: Tobacco Encyclopedia; Tobacco Journal International, Virginia, USA, 1984; ISBN-13: 978-3920615073.
  3. 3. Rodman, A. and T.A. Perfetti: The Chemical Components of Tobacco and Tobacco Smoke, Second Edition; CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, 2013; ISBN: 9781466515482.
  4. 4. Leffingwell, J.C.: Basic Chemical Constituents of Tobacco Leaf and Differences among Tobacco Types; in: Tobacco: Production, Chemistry and Technology; edited by D. Davis and M.T. Nielsen, Blackwell Science, Oxford, United Kingdom, 1999, pp. 265-284; ISBN-13: 978-0632047918.
  5. 5. Stedman, R.L.: The Chemical Composition of Tobacco and Tobacco Smoke; Chem. Rev. 68 (1968) 153-207; DOI: 10.1021/cr60252a002.10.1021/cr60252a0024868017
  6. 6. Schmeltz, I. and D. Hoffmann: Nitrogen-Containing Compounds in Tobacco and Tobacco Smoke; Chem. Rev. 77 (1977) 295-311; DOI: 10.1021/cr60307a001.10.1021/cr60307a001
  7. 7. Krishnan, P., N.J. Kruger, and R.G. Ratcliffe: Metabolite Fingerprinting and Profiling in Plants Using NMR; J. Exp. Bot. 56 (2005) 255-265; DOI:10.1093/jxb/ eri010.10.1093/jxb/12432039
  8. 8. Zhang, L., X. Wang, J. Guo, Q. Xia, G. Zhao, H. Zhou, and F. Xie: Metabolic Profiling of Chinese Tobacco Leaf of Different Geographical Origins by GC-MS; J. Agric. Food Chem. 61 (2013) 2597-2605; DOI: 10.1021/jf400428t.10.1021/jf400428t23441877
  9. 9. Zhao, Y., C. Zhao, X. Lu, H. Zhou, Y. Li, J. Zhou, Y. Chang, J. Zhang, L. Jin, F. Lin, and G. Xu: Investigation of the Relationship between the Metabolic Profile of Tobacco Leaves in Different Planting Regions and Climate Factors Using a Pseudotargeted Method Based on Gas Chromatography/Mass Spectrometry; J. Proteome Res. 12 (2013) 5072-5083; DOI: 10.1021/ pr400799a.
  10. 10. Zhang, J., Y. Zhang, Y. Du, S. Chen, and H. Tang: Dynamic Metabonomic Responses of Tobacco (Nicotiana tabacum) Plants to Salt Stress; J. Proteome Res. 10 (2011) 1904-1914; DOI: 10.1021/pr101140n.10.1021/pr101140n21323351
  11. 11. Cho, K., Y. Kim, S.J. Wi, J.B. Seo, J. Kwon, J.H. Chun, K.Y. Park, and M.H. Nam: Nontargeted Metabolite Profiling in Compatible Pathogen-Inoculated Tobacco (Nicotiana tabacum L. cv. Wisconsin 38) Using UPLCQ- TOF/MS; J. Agric. Food Chem. 60 (2012) 11015-11028; DOI: 10.1021/jf303702j.10.1021/jf303702j23072474
  12. 12. Rowland, R.L., P.H. Latimer, and J.A. Giles: Flue- Cured Tobacco. I. Isolation of Solanesol, an Unsaturated Alcohol; J. Am. Chem. Soc. 18 (1956) 4680-4683; DOI: 10.1021/ja01599a041.10.1021/ja01599a041
  13. 13. Ishida, N.: A Novel Method for Analyzing Solanesyl Esters in Tobacco Leaves Using Atmospheric Pressure Chemical Ionization/Mass Spectrometer; J. Chromatogr. A 1217 (2010) 5794-5801; DOI: 10.1016/j. chroma.2010.07.037.
  14. 14. Ishida, N.: Expanded Separation Technique for Chlorophyll Metabolites in Oriental Tobacco Leaf Using Non- Aqueous Reversed Phase Chromatography; J. Chromatogr. A 1218 (2011) 5810-5818; DOI: 10.1016/j. chroma.2011.06.082.
  15. 15. Ishida, N.: A Comprehensive Study on Triacylglycerols in Tobacco Leaves Using Liquid Chromatography and Atmospheric-Pressure Chemical-Ionization Mass Spectrometry; Beitr. Tabakforsch. Int. 25 (2013) 627-637; DOI: 10.2478/cttr-2013-0939.10.2478/cttr-2013-0939
  16. 16. Rowland, R.L.: Flue-Cured Tobacco. III. Solanachromene and α-Tocopherol; J. Am. Chem. Soc. 80 (1958) 6130-6133; DOI: 10.1021/ja01555a057.10.1021/ja01555a057
  17. 17. Ishida, N.: A Method for Simultaneous Analysis of Phytosterols and Phytosterol Esters in Tobacco Leaves Using Non-Aqueous Reversed Phase Chromatography and Atmospheric Pressure Chemical Ionization Mass Spectrometry Detector; J. Chromatogr. A 1340 (2014) 99-108; DOI: 10.1016/j.chroma.2014.03.021.10.1016/j.chroma.2014.03.02124690307
  18. 18.Want, E.J., A. Nordström, H. Morita, and G. Siuzdak: From Exogenous to Endogenous: The Inevitable Imprint of Mass Spectrometry in Metabolomics; J. Proteome Res. 6 (2007) 459-468; DOI: 10.1021/ pr060505+.
  19. 19. Lu, W., B.D. Bennett, and J.D. Rabinowitz: Analytical Strategies for LC-MS-Based Targeted Metabolomics; J. Chromatogr. B 871 (2008) 236-242; DOI: 10.1016/ j.jchromb.2008.04.031.
  20. 20. Kuehnbaum, N.L. and P. Britz-McKibbin: New Advances in Separation Science for Metabolomics: Resolving Chemical Diversity in a Post-Genomic Era; Chem. Rev. 113 (2013) 2437-2468; DOI: 10.1021/cr300484s.10.1021/cr300484s
  21. 21. Hurtado-Fernández, E., T. Pacchiarotta, E. Longueira- Suárez, O.A. Mayboroda, A. Fernández-Gutiérrez, and A. Carrasco-Pancorbo: Evaluation of Gas Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry as an Alternative to Gas Chromatography-Electron Ionization-Mass Spectrometry: Avocado Fruit as Example; J. Chromatogr. A 1313 (2013) 228-244; DOI: 10.1016/j.chroma.2013.08.084.10.1016/j.chroma.2013.08.084
  22. 22. Cho, K., Y. Kim, S.J. Wi, J.B. Seo, J. Kwon, J.H. Chung, K.Y. Park, and M.H. Nam: Metabolic Survey of Defense Responses to a Compatible Hemibiotroph, Phytophthora parasitica var. nicotianae, in Ethylene Signaling-Impaired Tobacco; J. Agric. Food Chem. 61 (2013) 8477-8489; DOI: 10.1021/jf401785w.10.1021/jf401785w
  23. 23. Monton, M.R.N. and T. Soga: Metabolome Analysis by Capillary Electrophoresis-Mass Spectrometry; J. Chromatogr. A 1168 (2007) 237-246; DOI: 10.1016/ j.chroma.2007.02.065.
  24. 24. Sandra, K., M. Moshir, F. D'hondt, K. Verleysen, K. Kasa, and P. Sandra: Highly Efficient Peptide Separations in Proteomics Part 1. Unidimensional High Performance Liquid Chromatography; J. Chromatogr. B 866 (2008) 48-63. DOI: 10.1016/j.jchromb.2007.10.034.10.1016/j.jchromb.2007.10.034
  25. 25. Dugo, P., M. Beccaria, N. Fawzy, P. Donato, F. Cacciola, and L. Mondello: Mass Spectrometric Elucidation of Triacylglycerol Content of Brevoortia tyrannus (Menhaden) Oil Using Non-Aqueous Reversed-Phase Liquid Chromatography Under Ultra High Pressure Conditions; J. Chromatogr. A 1259 (2012) 227-236; DOI: 10.1016/j.chroma.2012.03.067.10.1016/j.chroma.2012.03.067
  26. 26. Bamba, T., J.W. Lee, A. Matsubara, and E. Fukusaki: Metabolic Profiling of Lipids by Supercritical Fluid Chromatography/Mass Spectrometry; J. Chromatogr. A 1250 (2012) 212-21; DOI: 10.1016/j.chroma.2012.05.068.10.1016/j.chroma.2012.05.068
  27. 27. Vrhovsek, U., D. Masuero, M. Gasperotti, P. Franceschi, L. Caputi, R. Viola, and F. Mattivi: A Versatile Targeted Metabolomics Method for the Rapid Quantification of Multiple Classes of Phenolics in Fruits and Beverages; J. Agric. Food Chem. 60 (2012) 8831-8840; DOI: 10.1021/jf2051569.10.1021/jf2051569
  28. 28. Abu-Reidah, I.M., M.M. Contreras, D. Arráez-Román, A. Segura-Carretero, and A. Fernández-Gutiérrez: Reversed-Phase Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization- Quadrupole-Time-of-Flight Mass Spectrometry as a Powerful Tool for Metabolic Profiling of Vegetables: Lactuca sativa as an Example of its Application; J. Chromatogr. A 1313 (2013) 212-227; DOI: 10.1016/ j.chroma.2013.07.020.
  29. 29. Gan, H.H., C. Soukoulis, and I. Fisk: Atmospheric Pressure Chemical Ionisation Mass Spectrometry Analysis Linked With Chemometrics for Food Classification - A Case Study: Geographical Provenance and Cultivar Classification of Monovarietal Clarified Apple Juices; Food Chem. 146 (2014) 149-156; DOI: 10.1016/j.foodchem.2013.09.024.10.1016/j.foodchem.2013.09.024
  30. 30. Parris, N.A.: Non-Aqueous Reversed-Phase Liquid Chromatography: A Neglected Approach to the Analysis of Low Polarity Samples; J. Chromatogr. A 157 (1978) 161-170; DOI:10.1016/S0021-9673(00)92332-X.10.1016/S0021-9673(00)92332-X
  31. 31. Yang, S., M. Sadilek, and M.E. Lidstrom: Streamlined Pentafluorophenylpropyl Column Liquid Chromatography- Tandem Quadrupole Mass Spectrometry and Global 13C-labeled Internal Standards Improve Performance for Quantitative Metabolomics in Bacteria; J. Chromatogr. A 1217 (2010) 7401-741; DOI: 10.1016/ j.chroma.2010.09.055.
Language: English
Page range: 60 - 74
Published on: May 18, 2016
Published by: Institut für Tabakforschung GmbH
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Naoyuki Ishida, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.