References
- Li, W, Liang, H, Wang, W, Liu, J, Liu, X, Lao, S, et al.. Global cancer statistics for adolescents and young adults: population based study. J Hematol Oncol 2024;17:99. https://doi.org/10.1186/s13045-024-01623-9.
- Huang, CP, Chen, CC, Shyr, CR. Xenogeneic cell therapy provides a novel potential therapeutic option for cancers by restoring tissue function, repairing cancer wound and reviving anti-tumor immune responses. Cancer Cell Int 2018;18:1–7. https://doi.org/10.1186/s12935-018-0501-7.
- Steck, SE, Murphy, EA. Dietary patterns and cancer risk. Nat Rev Cancer 2020;20:125–38. https://doi.org/10.1038/s41568-019-0227-4.
- Cai, F, Luis, MAF, Lin, X, Wang, M, Cai, L, Cen, C, et al.. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: preventive strategies and treatment (Review). Mol Clin Oncol 2019;11:15–23. https://doi.org/10.3892/mco.2019.1854.
- Hatono, M, Ikeda, H, Suzuki, Y, Kajiwara, Y, Kawada, K, Tsukioki, T, et al.. Effect of isoflavones on breast cancer cell development and their impact on breast cancer treatments. Breast Cancer Res Treat 2021;185:307–16. https://doi.org/10.1007/s10549-020-05957-z.
- Zeng, Q, Chen, C, Chen, C, Song, H, Li, M, Yan, J, et al.. Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2023;286:122000. https://doi.org/10.1016/j.saa.2022.122000.
- Yan, W, Ma, X, Zhao, X, Zhang, S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des Devel 2018;12:3961–72. https://doi.org/10.2147/dddt.s181939.
- Yuan, H, Chen, Y, Hu, Y, Li, Y, Zhang, H, Zhang, S, et al.. Disulfide bond-driven nanoassembly of lipophilic epirubicin prodrugs for breast cancer therapy. J Pharm Investig 2025;25:1–4. https://doi.org/10.1007/s40005-025-00731-z.
- Kaplan, HM, Mete, S. Haplophyllum buxbaumii induces apoptosis via MAPK and AKT/mTOR pathways in MCF-7 breast cancer cell line. Int J Pharmacol 2023;19:531–6. https://doi.org/10.3923/ijp.2023.531.536.
- Ferlay, J, Colombet, M, Soerjomataram, I, Parkin, DM, Pineros, M, Znaor, A, et al.. Cancer statistics for the year 2020: an overview. Int J Cancer 2021;149:778–89. https://doi.org/10.1002/ijc.33588.
- Calaf, GM, Ponce-Cusi, R, Aguayo, F, Muñoz, JP, Bleak, TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 2020;20:19–32. https://doi.org/10.3892/ol.2020.11566.
- Jiang, CH, Sun, TL, Xiang, DX, Wei, SS, Li, WQ. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 2018;9:530. https://doi.org/10.3389/fphar.2018.00530.
- Pang, J, Ding, N, Liu, X, He, X, Zhou, W, Xie, H, et al.. Prognostic value of the baseline systemic immune-inflammation index in HER2-positive metastatic breast cancer: exploratory analysis of two prospective trials. Ann Surg Oncol 2025;32:750–9. https://doi.org/10.1245/s10434-024-16454-8.
- Habara, M, Shimada, M. Estrogen receptor α revised: expression, structure, function, and stability. Bioessays 2022;44:2200148. https://doi.org/10.1002/bies.202200148.
- Zhong, L, Li, Y, Xiong, L, Wang, W, Wu, M, Yuan, T, et al.. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct 2021;6:1–48. https://doi.org/10.1038/s41392-021-00572-w.
- Anand, U, Jacobo-Herrera, N, Altemimi, A, Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites 2019;9:258. https://doi.org/10.3390/metabo9110258.
- Banks, H, Forest, F, Lewis, G. Palynological contribution to the systematics and taxonomy of Bauhinia sl (Leguminosae: Cercideae). S Afr J Bot 2013;89:219–26. https://doi.org/10.1016/j.sajb.2013.07.028.
- Jian, J, Xuan, F, Qin, F, Huang, R. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats. Drug Des Dev Ther 2015;9:5933–45. https://doi.org/10.2147/dddt.s92549.
- Neto, MM, Neto, MA, Braz Filho, R, Lima, MAS, Silveira, ER. Flavonoids and alkaloids from leaves of Bauhinia ungulata L. Biochem Syst Ecol 2008;36:227–9. https://doi.org/10.1016/j.bse.2007.08.006.
- Bodakhe, SH, Ram, A, Verma, S, Pandey, DP. Anticataract activity of rhamnocitrin isolated from Bauhinia variegata stem bark. Orient Pharm Exp Med 2012;12:227–32. https://doi.org/10.1007/s13596-012-0059-1.
- Al-Taweel, AM, El-Shafae, AM, Perveen, S, Fawzy, GA, Khan, SI. Anti-inflammatory and cytotoxic constituents of Bauhinia retusa. Int J Pharm 2015;11:372–6. https://doi.org/10.3923/ijp.2015.372.376.
- Agrawal, SB, Gupta, N, Bhagyawant, SS, Gaikwad, SM. Anticancer activity of lectins from Bauhinia purpurea and Wisteria floribunda on breast cancer MCF-7 cell lines. Protein Pept 2020;27:870–7. https://doi.org/10.2174/0929866527666200408143614.
- Zhang, Y, Yan, G, Sun, C, Li, H, Fu, Y, Xu, W. Apoptosis effects of dihydrokaempferol isolated from Bauhinia championii on synoviocytes. J Evid Based Complement Altern Med 2018;2018:9806160. https://doi.org/10.1155/2018/9806160.
- Phoopha, S, Wattanapiromsakul, C, Pitakbut, T, Dej-Adisai, S. A new stilbene derivative and isolated compounds from Bauhinia pottsii var. pottsii with their anti-alpha-glucosidase activity. Pharmacog Mag 2020;16:23–32. https://doi.org/10.4103/pm.pm_433_19.
- Chakraborty, S, Bala, NN, Das, S. Isolation and characterization of a flavonoid and analgesic activity of leaves of Bauhinia acuminata Linn. Res J Pharm Technol 2023;16:2177–81.
- Nouemsi, GRS, Jouda, JB, Leutcha, PB, Matieta, VY, Tsague Tankeu, VF, Ngnouzouba Kuete, JR, et al.. A new flavonol derivative and other compounds from the leaves of Bauhinia thonningii Schum with activity against multidrug-resistant bacteria. Nat Prod Res 2023;37:2653–61. https://doi.org/10.1080/14786419.2022.2128347.
- Barril, X. Computer-aided drug design: time to play with novel chemical matter. Expert Opin Drug Discov 2017;12:977–80. https://doi.org/10.1080/17460441.2017.1362386.
- Xiang, Q, Xiang, Y, Liu, Y, Chen, Y, He, Q, Chen, T, et al.. Revealing the potential therapeutic mechanism of Lonicerae Japonicae Flos in Alzheimer’s disease: a computational biology approach. Front Med 2024;11:1468561. https://doi.org/10.3389/fmed.2024.1468561.
- Sulimov, A, Kutov, D, Ilin, I, Zheltkov, D, Tyrtyshnikov, E, Sulimov, V. Supercomputer docking with a large number of degrees of freedom. SAR QSAR Environ Res 2019;30:733–49. https://doi.org/10.1080/1062936x.2019.1659412.
- Muhammed, MT, Kuyucuklu, G, Kaynak-Onurdag, F, Aki-Yalcin, E. Synthesis, antimicrobial activity, and molecular modeling studies of some benzoxazole derivatives. Lett Drug Des Discov 2022;19:757–68. https://doi.org/10.2174/1570180819666220408133643.
- Faloye, KO, Bekono, BD, Fakola, EG, Ayoola, MD, Bello, OI, Olajubutu, OG, et al.. Elucidating the glucokinase activating potentials of naturally occurring prenylated flavonoids: an explicit computational approach. Molecules 2021;26:7211. https://doi.org/10.3390/molecules26237211.
- Trott, O, Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61. https://doi.org/10.1002/jcc.21334.
- Lipinski, CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today 2004;1:337–41. https://doi.org/10.1016/j.ddtec.2004.11.007.
- Becke, AD. A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 1993;98:1372–7. https://doi.org/10.1063/1.464304.
- Tasneem, S, Liu, B, Li, B, Choudhary, MI, Wang, W. Molecular pharmacology of inflammation: medicinal plants as anti-inflammatory agents. Pharmacol Res 2019;139:126–40. https://doi.org/10.1016/j.phrs.2018.11.001.
- Awuchi, CG. Medicinal plants: the medical, food, and nutritional biochemistry and uses. J Adv Acad Res 2019;5:220–41.
- Poprac, P, Jomova, K, Simunkova, M, Kollar, V, Rhodes, CJ, Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017;38:592–607. https://doi.org/10.1016/j.tips.2017.04.005.
- Famuyiwa, SO, Sanusi, K, Faloye, KO, Yilmaz, Y, Ceylan, Ü. Antidiabetic and antioxidant activities: is there any link between them? New J Chem 2019;43:13326–9. https://doi.org/10.1039/c9nj01251f.
- Zhu, L, Luo, M, Zhang, Y, Fang, F, Li, M, An, F, et al.. Free radical as a double-edged sword in disease: deriving strategic opportunities for nanotherapeutics. Coord Chem Rev 2023;475:14875. https://doi.org/10.1016/j.ccr.2022.214875.
- Fortunato, RH, Nores, MJ. “Cow’s Hoof”(Bauhinia L., Leguminosae): a review on pharmacological properties of Austral south American species. Plants 2022;12:31. https://doi.org/10.3390/plants12010031.
- Munshi, M, Zilani, MNH, Islam, MA, Biswas, P, Das, A, Afroz, F, et al.. Novel compounds from endophytic fungi of Ceriops decandra inhibit breast cancer cell growth through estrogen receptor alpha in in-silico study. Inform Med Unlocked 2022;32:101046. https://doi.org/10.1016/j.imu.2022.101046.
- Wang, ZY, Yin, L. Estrogen receptor alpha-36 (ER-α36): a new player in human breast cancer. Mol Cell Endocrinol 2015;418:193–206. https://doi.org/10.1016/j.mce.2015.04.017.
- Gu, G, Dustin, D, Fuqua, SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol 2016;31:97–103. https://doi.org/10.1016/j.coph.2016.11.005.
- Szostakowska, M, Trębińska-Stryjewska, A, Grzybowska, EA, Fabisiewicz, A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 2019;173:489–97. https://doi.org/10.1007/s10549-018-5023-4.
- Money, S, Garber, B. Management of cancer pain. Curr Emerg Hosp Med Rep 2018;6:141–6. https://doi.org/10.1007/s40138-018-0170-9.
- Sehrawat, R, Rathee, P, Rathee, P, Khatkar, S, Akkol, EK, Khatkar, A, et al.. In silico design of novel bioactive molecules to treat breast cancer with chlorogenic acid derivatives: a computational and SAR approach. Front Pharmacol 2023;14:1266833. https://doi.org/10.3389/fphar.2023.1266833.
- Singhal, G, Roy, A, Bharadvaja, N. In-silico study on plant determined flavonoids compounds for the synthetic medications against breast cancer growth. JAHM 2017;3:116–21. https://doi.org/10.31254/jahm.2017.3303.
- Ejalonibu, MA, Ogundare, SA, Elrashedy, AA, Ejalonibu, MA, Lawal, MM, Mhlongo, NN, et al.. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci 2021;22:13259. https://doi.org/10.3390/ijms222413259.
- Vatansever, S, Schlessinger, A, Wacker, D, Kaniskan, HÜ, Jin, J, Zhou, MM, et al.. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: state‐of‐the‐arts and future directions. Med Res Rev 2021;41:1427–73. https://doi.org/10.1002/med.21764.
- Agu, PC, Afiukwa, CA, Orji, OU, Ezeh, EM, Ofoke, IH, Ogbu, CO, et al.. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 2023;13:13398. https://doi.org/10.1038/s41598-023-40160-2.
- Fitriah, A, Holil, K, Syarifah, U, Fitriyah, F, Utomo, DH. In silico approach for revealing the anti-breast cancer and estrogen receptor alpha inhibitory activity of Artocarpus altilis. In: AIP Conference Proceedings. AIP Publishing; 2018, vol 2021:070003 p.
- Rocha-Roa, C, Cortes, E, Cuesta, SA, Mora, JR, Paz, JL, Flores-Sumoza, M, et al.. Study of potential inhibition of the estrogen receptor α by cannabinoids using an in silico approach: agonist vs antagonist mechanism. Comput Biol Med 2023;152:106403. https://doi.org/10.1016/j.compbiomed.2022.106403.
- Muhammad, S, Saba, A, Khera, RA, Al-Sehemi, AG, Algarni, H, Iqbal, J, et al.. Virtual screening of potential inhibitor against breast cancer-causing estrogen receptor alpha (ERα): molecular docking and dynamic simulations. Mol Simul 2022;48:1163–74. https://doi.org/10.1080/08927022.2022.2072840.
- Gao, Q, Ming, D. Protein-protein interactions enhance the thermal resilience of SpyRing-cyclized enzymes: a molecular dynamic simulation study. PLoS One 2022;17:e0263792. https://doi.org/10.1371/journal.pone.0263792.
- Faloye, KO, Tripathi, MK, Fakola, EG, Adepiti, AO, Adesida, SA, Oyeleke, IO, et al.. Plasmepsin II inhibitory potential of phytochemicals isolated from African antimalarial plants: a computational approach. J Biomol Struct Dyn 2025;43:505–20. https://doi.org/10.1080/07391102.2023.2283146.
- Daina, A, Michielin, O, Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717.
- Famuyiwa, SO, Faloye, KO, Ayoola, MD, Fakola, EG, Ndinteh, DT. 4′-O-galloy-3, 3′-di-O-methylellargic acid 4-O-xylopyranoside; a potential anti-diabetic agent. Results Chem 2022;4:100644. https://doi.org/10.1016/j.rechem.2022.100644.
- Ayeni, AO, Akinyele, OF, Hosten, EC, Fakola, EG, Olalere, JT, Egharevba, GO, et al.. Synthesis, crystal structure, experimental and theoretical studies of corrosion inhibition of 2-((4-(2-hydroxy-4-methylbenzyl) piperazin-1-yl) methyl)-5-methylphenol–A Mannich base. J Mol Struct 2020;1219:128539. https://doi.org/10.1016/j.molstruc.2020.128539.
- Hussein, YT, Azeez, YH. DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. J Biomol Struct Dyn 2023;41:1168–77. https://doi.org/10.1080/07391102.2021.2017350.
- Domingo, LR, Ríos-Gutiérrez, M, Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016;21:748. https://doi.org/10.3390/molecules21060748.