Have a personal or library account? Click to login
Unravelling the therapeutic effect of naturally occurring Bauhinia flavonoids against breast cancer: an integrated computational approach Cover

Unravelling the therapeutic effect of naturally occurring Bauhinia flavonoids against breast cancer: an integrated computational approach

Open Access
|Dec 2025

References

  1. Li, W, Liang, H, Wang, W, Liu, J, Liu, X, Lao, S, et al.. Global cancer statistics for adolescents and young adults: population based study. J Hematol Oncol 2024;17:99. https://doi.org/10.1186/s13045-024-01623-9.
  2. Huang, CP, Chen, CC, Shyr, CR. Xenogeneic cell therapy provides a novel potential therapeutic option for cancers by restoring tissue function, repairing cancer wound and reviving anti-tumor immune responses. Cancer Cell Int 2018;18:1–7. https://doi.org/10.1186/s12935-018-0501-7.
  3. Steck, SE, Murphy, EA. Dietary patterns and cancer risk. Nat Rev Cancer 2020;20:125–38. https://doi.org/10.1038/s41568-019-0227-4.
  4. Cai, F, Luis, MAF, Lin, X, Wang, M, Cai, L, Cen, C, et al.. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: preventive strategies and treatment (Review). Mol Clin Oncol 2019;11:15–23. https://doi.org/10.3892/mco.2019.1854.
  5. Hatono, M, Ikeda, H, Suzuki, Y, Kajiwara, Y, Kawada, K, Tsukioki, T, et al.. Effect of isoflavones on breast cancer cell development and their impact on breast cancer treatments. Breast Cancer Res Treat 2021;185:307–16. https://doi.org/10.1007/s10549-020-05957-z.
  6. Zeng, Q, Chen, C, Chen, C, Song, H, Li, M, Yan, J, et al.. Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2023;286:122000. https://doi.org/10.1016/j.saa.2022.122000.
  7. Yan, W, Ma, X, Zhao, X, Zhang, S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug Des Devel 2018;12:3961–72. https://doi.org/10.2147/dddt.s181939.
  8. Yuan, H, Chen, Y, Hu, Y, Li, Y, Zhang, H, Zhang, S, et al.. Disulfide bond-driven nanoassembly of lipophilic epirubicin prodrugs for breast cancer therapy. J Pharm Investig 2025;25:1–4. https://doi.org/10.1007/s40005-025-00731-z.
  9. Kaplan, HM, Mete, S. Haplophyllum buxbaumii induces apoptosis via MAPK and AKT/mTOR pathways in MCF-7 breast cancer cell line. Int J Pharmacol 2023;19:531–6. https://doi.org/10.3923/ijp.2023.531.536.
  10. Ferlay, J, Colombet, M, Soerjomataram, I, Parkin, DM, Pineros, M, Znaor, A, et al.. Cancer statistics for the year 2020: an overview. Int J Cancer 2021;149:778–89. https://doi.org/10.1002/ijc.33588.
  11. Calaf, GM, Ponce-Cusi, R, Aguayo, F, Muñoz, JP, Bleak, TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 2020;20:19–32. https://doi.org/10.3892/ol.2020.11566.
  12. Jiang, CH, Sun, TL, Xiang, DX, Wei, SS, Li, WQ. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front Pharmacol 2018;9:530. https://doi.org/10.3389/fphar.2018.00530.
  13. Pang, J, Ding, N, Liu, X, He, X, Zhou, W, Xie, H, et al.. Prognostic value of the baseline systemic immune-inflammation index in HER2-positive metastatic breast cancer: exploratory analysis of two prospective trials. Ann Surg Oncol 2025;32:750–9. https://doi.org/10.1245/s10434-024-16454-8.
  14. Habara, M, Shimada, M. Estrogen receptor α revised: expression, structure, function, and stability. Bioessays 2022;44:2200148. https://doi.org/10.1002/bies.202200148.
  15. Zhong, L, Li, Y, Xiong, L, Wang, W, Wu, M, Yuan, T, et al.. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct 2021;6:1–48. https://doi.org/10.1038/s41392-021-00572-w.
  16. Anand, U, Jacobo-Herrera, N, Altemimi, A, Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites 2019;9:258. https://doi.org/10.3390/metabo9110258.
  17. Banks, H, Forest, F, Lewis, G. Palynological contribution to the systematics and taxonomy of Bauhinia sl (Leguminosae: Cercideae). S Afr J Bot 2013;89:219–26. https://doi.org/10.1016/j.sajb.2013.07.028.
  18. Jian, J, Xuan, F, Qin, F, Huang, R. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats. Drug Des Dev Ther 2015;9:5933–45. https://doi.org/10.2147/dddt.s92549.
  19. Neto, MM, Neto, MA, Braz Filho, R, Lima, MAS, Silveira, ER. Flavonoids and alkaloids from leaves of Bauhinia ungulata L. Biochem Syst Ecol 2008;36:227–9. https://doi.org/10.1016/j.bse.2007.08.006.
  20. Bodakhe, SH, Ram, A, Verma, S, Pandey, DP. Anticataract activity of rhamnocitrin isolated from Bauhinia variegata stem bark. Orient Pharm Exp Med 2012;12:227–32. https://doi.org/10.1007/s13596-012-0059-1.
  21. Al-Taweel, AM, El-Shafae, AM, Perveen, S, Fawzy, GA, Khan, SI. Anti-inflammatory and cytotoxic constituents of Bauhinia retusa. Int J Pharm 2015;11:372–6. https://doi.org/10.3923/ijp.2015.372.376.
  22. Agrawal, SB, Gupta, N, Bhagyawant, SS, Gaikwad, SM. Anticancer activity of lectins from Bauhinia purpurea and Wisteria floribunda on breast cancer MCF-7 cell lines. Protein Pept 2020;27:870–7. https://doi.org/10.2174/0929866527666200408143614.
  23. Zhang, Y, Yan, G, Sun, C, Li, H, Fu, Y, Xu, W. Apoptosis effects of dihydrokaempferol isolated from Bauhinia championii on synoviocytes. J Evid Based Complement Altern Med 2018;2018:9806160. https://doi.org/10.1155/2018/9806160.
  24. Phoopha, S, Wattanapiromsakul, C, Pitakbut, T, Dej-Adisai, S. A new stilbene derivative and isolated compounds from Bauhinia pottsii var. pottsii with their anti-alpha-glucosidase activity. Pharmacog Mag 2020;16:23–32. https://doi.org/10.4103/pm.pm_433_19.
  25. Chakraborty, S, Bala, NN, Das, S. Isolation and characterization of a flavonoid and analgesic activity of leaves of Bauhinia acuminata Linn. Res J Pharm Technol 2023;16:2177–81.
  26. Nouemsi, GRS, Jouda, JB, Leutcha, PB, Matieta, VY, Tsague Tankeu, VF, Ngnouzouba Kuete, JR, et al.. A new flavonol derivative and other compounds from the leaves of Bauhinia thonningii Schum with activity against multidrug-resistant bacteria. Nat Prod Res 2023;37:2653–61. https://doi.org/10.1080/14786419.2022.2128347.
  27. Barril, X. Computer-aided drug design: time to play with novel chemical matter. Expert Opin Drug Discov 2017;12:977–80. https://doi.org/10.1080/17460441.2017.1362386.
  28. Xiang, Q, Xiang, Y, Liu, Y, Chen, Y, He, Q, Chen, T, et al.. Revealing the potential therapeutic mechanism of Lonicerae Japonicae Flos in Alzheimer’s disease: a computational biology approach. Front Med 2024;11:1468561. https://doi.org/10.3389/fmed.2024.1468561.
  29. Sulimov, A, Kutov, D, Ilin, I, Zheltkov, D, Tyrtyshnikov, E, Sulimov, V. Supercomputer docking with a large number of degrees of freedom. SAR QSAR Environ Res 2019;30:733–49. https://doi.org/10.1080/1062936x.2019.1659412.
  30. Muhammed, MT, Kuyucuklu, G, Kaynak-Onurdag, F, Aki-Yalcin, E. Synthesis, antimicrobial activity, and molecular modeling studies of some benzoxazole derivatives. Lett Drug Des Discov 2022;19:757–68. https://doi.org/10.2174/1570180819666220408133643.
  31. Faloye, KO, Bekono, BD, Fakola, EG, Ayoola, MD, Bello, OI, Olajubutu, OG, et al.. Elucidating the glucokinase activating potentials of naturally occurring prenylated flavonoids: an explicit computational approach. Molecules 2021;26:7211. https://doi.org/10.3390/molecules26237211.
  32. Trott, O, Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61. https://doi.org/10.1002/jcc.21334.
  33. Lipinski, CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today 2004;1:337–41. https://doi.org/10.1016/j.ddtec.2004.11.007.
  34. Becke, AD. A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 1993;98:1372–7. https://doi.org/10.1063/1.464304.
  35. Tasneem, S, Liu, B, Li, B, Choudhary, MI, Wang, W. Molecular pharmacology of inflammation: medicinal plants as anti-inflammatory agents. Pharmacol Res 2019;139:126–40. https://doi.org/10.1016/j.phrs.2018.11.001.
  36. Awuchi, CG. Medicinal plants: the medical, food, and nutritional biochemistry and uses. J Adv Acad Res 2019;5:220–41.
  37. Poprac, P, Jomova, K, Simunkova, M, Kollar, V, Rhodes, CJ, Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017;38:592–607. https://doi.org/10.1016/j.tips.2017.04.005.
  38. Famuyiwa, SO, Sanusi, K, Faloye, KO, Yilmaz, Y, Ceylan, Ü. Antidiabetic and antioxidant activities: is there any link between them? New J Chem 2019;43:13326–9. https://doi.org/10.1039/c9nj01251f.
  39. Zhu, L, Luo, M, Zhang, Y, Fang, F, Li, M, An, F, et al.. Free radical as a double-edged sword in disease: deriving strategic opportunities for nanotherapeutics. Coord Chem Rev 2023;475:14875. https://doi.org/10.1016/j.ccr.2022.214875.
  40. Fortunato, RH, Nores, MJ. “Cow’s Hoof”(Bauhinia L., Leguminosae): a review on pharmacological properties of Austral south American species. Plants 2022;12:31. https://doi.org/10.3390/plants12010031.
  41. Munshi, M, Zilani, MNH, Islam, MA, Biswas, P, Das, A, Afroz, F, et al.. Novel compounds from endophytic fungi of Ceriops decandra inhibit breast cancer cell growth through estrogen receptor alpha in in-silico study. Inform Med Unlocked 2022;32:101046. https://doi.org/10.1016/j.imu.2022.101046.
  42. Wang, ZY, Yin, L. Estrogen receptor alpha-36 (ER-α36): a new player in human breast cancer. Mol Cell Endocrinol 2015;418:193–206. https://doi.org/10.1016/j.mce.2015.04.017.
  43. Gu, G, Dustin, D, Fuqua, SA. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol 2016;31:97–103. https://doi.org/10.1016/j.coph.2016.11.005.
  44. Szostakowska, M, Trębińska-Stryjewska, A, Grzybowska, EA, Fabisiewicz, A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 2019;173:489–97. https://doi.org/10.1007/s10549-018-5023-4.
  45. Money, S, Garber, B. Management of cancer pain. Curr Emerg Hosp Med Rep 2018;6:141–6. https://doi.org/10.1007/s40138-018-0170-9.
  46. Sehrawat, R, Rathee, P, Rathee, P, Khatkar, S, Akkol, EK, Khatkar, A, et al.. In silico design of novel bioactive molecules to treat breast cancer with chlorogenic acid derivatives: a computational and SAR approach. Front Pharmacol 2023;14:1266833. https://doi.org/10.3389/fphar.2023.1266833.
  47. Singhal, G, Roy, A, Bharadvaja, N. In-silico study on plant determined flavonoids compounds for the synthetic medications against breast cancer growth. JAHM 2017;3:116–21. https://doi.org/10.31254/jahm.2017.3303.
  48. Ejalonibu, MA, Ogundare, SA, Elrashedy, AA, Ejalonibu, MA, Lawal, MM, Mhlongo, NN, et al.. Drug discovery for Mycobacterium tuberculosis using structure-based computer-aided drug design approach. Int J Mol Sci 2021;22:13259. https://doi.org/10.3390/ijms222413259.
  49. Vatansever, S, Schlessinger, A, Wacker, D, Kaniskan, HÜ, Jin, J, Zhou, MM, et al.. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: state‐of‐the‐arts and future directions. Med Res Rev 2021;41:1427–73. https://doi.org/10.1002/med.21764.
  50. Agu, PC, Afiukwa, CA, Orji, OU, Ezeh, EM, Ofoke, IH, Ogbu, CO, et al.. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 2023;13:13398. https://doi.org/10.1038/s41598-023-40160-2.
  51. Fitriah, A, Holil, K, Syarifah, U, Fitriyah, F, Utomo, DH. In silico approach for revealing the anti-breast cancer and estrogen receptor alpha inhibitory activity of Artocarpus altilis. In: AIP Conference Proceedings. AIP Publishing; 2018, vol 2021:070003 p.
  52. Rocha-Roa, C, Cortes, E, Cuesta, SA, Mora, JR, Paz, JL, Flores-Sumoza, M, et al.. Study of potential inhibition of the estrogen receptor α by cannabinoids using an in silico approach: agonist vs antagonist mechanism. Comput Biol Med 2023;152:106403. https://doi.org/10.1016/j.compbiomed.2022.106403.
  53. Muhammad, S, Saba, A, Khera, RA, Al-Sehemi, AG, Algarni, H, Iqbal, J, et al.. Virtual screening of potential inhibitor against breast cancer-causing estrogen receptor alpha (ERα): molecular docking and dynamic simulations. Mol Simul 2022;48:1163–74. https://doi.org/10.1080/08927022.2022.2072840.
  54. Gao, Q, Ming, D. Protein-protein interactions enhance the thermal resilience of SpyRing-cyclized enzymes: a molecular dynamic simulation study. PLoS One 2022;17:e0263792. https://doi.org/10.1371/journal.pone.0263792.
  55. Faloye, KO, Tripathi, MK, Fakola, EG, Adepiti, AO, Adesida, SA, Oyeleke, IO, et al.. Plasmepsin II inhibitory potential of phytochemicals isolated from African antimalarial plants: a computational approach. J Biomol Struct Dyn 2025;43:505–20. https://doi.org/10.1080/07391102.2023.2283146.
  56. Daina, A, Michielin, O, Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7:42717. https://doi.org/10.1038/srep42717.
  57. Famuyiwa, SO, Faloye, KO, Ayoola, MD, Fakola, EG, Ndinteh, DT. 4′-O-galloy-3, 3′-di-O-methylellargic acid 4-O-xylopyranoside; a potential anti-diabetic agent. Results Chem 2022;4:100644. https://doi.org/10.1016/j.rechem.2022.100644.
  58. Ayeni, AO, Akinyele, OF, Hosten, EC, Fakola, EG, Olalere, JT, Egharevba, GO, et al.. Synthesis, crystal structure, experimental and theoretical studies of corrosion inhibition of 2-((4-(2-hydroxy-4-methylbenzyl) piperazin-1-yl) methyl)-5-methylphenol–A Mannich base. J Mol Struct 2020;1219:128539. https://doi.org/10.1016/j.molstruc.2020.128539.
  59. Hussein, YT, Azeez, YH. DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. J Biomol Struct Dyn 2023;41:1168–77. https://doi.org/10.1080/07391102.2021.2017350.
  60. Domingo, LR, Ríos-Gutiérrez, M, Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016;21:748. https://doi.org/10.3390/molecules21060748.
Language: English
Submitted on: Apr 29, 2025
Accepted on: Oct 10, 2025
Published on: Dec 18, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Kolade O. Faloye, Manish K. Tripathi, Emmanuel G. Fakola, Regina B. Bankole, Ahmad J. Obaidullah, Jawaher M. Alotaibi, Ayobami J. Olusola, Seun B. Ogundele, Oluwabukumi G. Olajubutu, Olajide B. Omoyeni, John Mponda, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.