Have a personal or library account? Click to login
Protective effect of green synthesized nanoceria on retinal oxidative stress and inflammation in streptozotocin-induced diabetic rat Cover

Protective effect of green synthesized nanoceria on retinal oxidative stress and inflammation in streptozotocin-induced diabetic rat

Open Access
|Sep 2025

References

  1. Chang G, Tian S, Luo X, Xiang Y, Cai C, Zhu R, et al. Hypoglycemic effects and mechanisms of polyphenols from Myrica rubra pomace in type 2 diabetes (db/db) mice. Mol Nutr Food Res. 2025;69(10):e202400523.
  2. Zhang N, Wang Y, Li W, Wang Y, Zhang H, Xu D, et al. Association between serum vitamin D level and cardiovascular disease in Chinese patients with type 2 diabetes mellitus: a cross-sectional study. Sci Rep. 2025;15(1):6454.
  3. Liang J, He Y, Huang C, Ji F, Zhou X, Yin Y. The regulation of selenoproteins in diabetes: a new way to treat diabetes. Curr Pharm Des. 2024;30(20):1541–7.
  4. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, et al. Diabetic retinopathy. Diabetes Care. 2003;26(suppl_1):s99–102.
  5. Robinson Jr WG, Tillis TN, Laver N, Kinoshita JH. Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp Eye Res. 1990;50(4):355–66.
  6. Xu G, Yao Q, Weng Q, Su B, Zhang X, Xiong J. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J Pharm Biomed Anal. 2004;36(1):101–4.
  7. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1–9.
  8. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia: VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001;50(8):1938–42.
  9. Du Y, Miller CM, Kern T. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med. 2003;35(11):1491–9.
  10. Kowluru RA, Atasi L, Ho Y-S. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Investig Ophthalmol Vis Sci. 2006;47(4):1594–9.
  11. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.
  12. Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retinal Eye Res. 2011;30(5):343–58.
  13. Gloire G, Legrand-Poels S, Piette J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11):1493–505.
  14. Kim J-A, Lau EK, Pan L, De Blanco EJC. NF-κB inhibitors from Brucea javanica exhibiting intracellular effects on reactive oxygen species. Anticancer Res. 2010;30(9):3295–300.
  15. Pan H-Z, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol. 2008;92(4):548–51.
  16. Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord. 2008;9:315–27.
  17. Cheng X, Huang J, Li H, Zhao D, Liu Z, Zhu L, et al. Quercetin: a promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. Phytomedicine. 2024;126:154887.
  18. Li W, Liu X, Liu Z, Xing Q, Liu R, Wu Q, et al. The signaling pathways of selected traditional Chinese medicine prescriptions and their metabolites in the treatment of diabetic cardiomyopathy: a review. Front Pharmacol. 2024;15:1416403.
  19. Geronikaki AA, Gavalas AM. Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen. 2006;9(6):425–42.
  20. Li W, Khor TO, Xu C, Shen G, Jeong W-S, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76(11):1485–9.
  21. Bloomgarden ZT. Antioxidants and diabetes. Diabetes Care. 1997;20(4):670.
  22. Yeh P-T, Huang H-W, Yang C-M, Yang W-S, Yang C-H. Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS One. 2016;11(1):e0146438.
  23. Wang K, Yin J, Chen J, Ma J, Si H, Xia D. Inhibition of inflammation by berberine: Molecular mechanism and network pharmacology analysis. Phytomedicine. 2024;128:155258.
  24. Bansal AK, Bilaspuri G. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2011;2011:579–86.
  25. Pingitore A, Lima GPP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7–8):916–22.
  26. Celardo I, Traversa E, Ghibelli L. Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol. 2011;9(1):47–51.
  27. Casals G, Perramón M, Casals E, Portolés I, Fernández-Varo G, Morales-Ruiz M, et al. Cerium oxide nanoparticles: a new therapeutic tool in liver diseases. Antioxidants. 2021;10(5):660.
  28. Jakupec M, Unfried P, Keppler B. Pharmacological properties of cerium compunds. Rev Physiol Biochem Pharmacol. 2005;153:101–11.
  29. Sathiyaseelan A, Saravanakumar K, Wang M-H. Cerium oxide decorated 5-fluorouracil loaded chitosan nanoparticles for treatment of hepatocellular carcinoma. Int J Biol Macromol. 2022;216:52–64.
  30. Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Technol. 2022;37(8):555–68.
  31. Kubavat K, Trivedi P, Ansari H, Kongor A, Panchal M, Jain V, et al. Green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour. Beni-Suef Univ J Basic Appl Sci. 2022;11(1):115.
  32. Kermani G, Karimi E, Tabrizi MH. Hybrid nanoarchitectonics of chitosan-cerium oxide nanoparticles for anticancer potentials. J Inorg Organomet Polym Mater. 2022;32(7):2591–9.
  33. Yiling W, Murakonda GK, Jarubula R. Application of green-synthesized cerium oxide nanoparticles to treat spinal cord injury and cytotoxicity evaluation on paediatric leukaemia cells. Mater Res Express. 2021;8(7):075006.
  34. Khorrami S, Zarepour A, Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. Biotechnol Rep. 2019;24:e00393.
  35. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326.
  36. Yakoob AT, Tajuddin NB, Hussain MIM, Mathew S, Govindaraju A, Qadri I. Antioxidant and hypoglycemic activities of Clausena anisata (Willd.) Hook F. ex benth. root mediated synthesized silver nanoparticles. Pharmacogn J. 2016;8(6):686137.
  37. Ghasemi A, Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: a practical guide. EXCLI J. 2023;22:274.
  38. Ansari AA, Labis JP, Alam M, Ramay SM, Ahmad N, Mahmood A. Synthesis, structural and optical properties of Mn-doped ceria nanoparticles: a promising catalytic material. Acta Metall Sin (Engl Lett). 2016;29:265–73.
  39. Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, et al. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomed. 2016;11:5015–25.
  40. Li S, Hu S, Jiang W, Liu Y, Zhou Y, Liu J, et al. Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. J Colloid Interface Sci. 2018;530:171–8.
  41. Badirzadeh A, Alipour M, Najm M, Vosoogh A, Vosoogh M, Samadian H, et al. Potential therapeutic effects of curcumin coated silver nanoparticle in the treatment of cutaneous leishmaniasis due to Leishmania major in-vitro and in a murine model. J Drug Delivery Sci Technol. 2022;74:103576.
  42. Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Controlled Rel. 2016;235:337–51.
  43. Habib IY, Kumara N, Lim CM, Mahadi AH. Dynamic light scattering and zeta potential studies of ceria nanoparticles. Solid State Phenom. 2018;278:112–20.
  44. Ornatska M, Sharpe E, Andreescu D, Andreescu S. Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem. 2011;83(11):4273–80.
  45. Koosha F, Farsangi ZJ, Samadian H, Amini SM. Mesoporous silica coated gold nanorods: a multifunctional theranostic platform for radiotherapy and X-ray imaging. J Porous Mater. 2021;28(6):1961–8.
  46. Clogston JD, Patri AK. Zeta potential measurement. Characterization of nanoparticles intended for drug delivery. Springer; 2011. p. 63–70
  47. Salopek B, Krasic D, Filipovic S. Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik. 1992;4(1):147.
  48. Gulicovski JJ, Bračko I, Milonjić SK. Morphology and the isoelectric point of nanosized aqueous ceria sols. Mater Chem Phys. 2014;148(3):868–73.
  49. Taherzadeh D, Amiri H, Ebrahimi S, Ghafarpour A, Samandarinejad N, Darroudi M, et al. Green synthesis of cerium oxide nanoparticles using Falcaria vulgaris leaf extract and its anti-tumoral effects in prostate cancer. Methods in Molecular Biology (MIMB), vol. 697, 2023, p. 63–70.
  50. Hancock ML, Yokel RA, Beck MJ, Calahan JL, Jarrells TW, Munson EJ, et al. The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis. Appl Surf Sci. 2021;535:147681.
  51. Finkel T. Oxidant signals and oxidative stress. Curr OpCell Biol. 2003;15(2):247–54.
  52. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.
  53. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes. 2003;52(1):1–8.
  54. Keser S, Celik S, Turkoglu S, Yilmaz O, Turkoglu I. Hydrogen peroxide radical scavenging and total antioxidant activity of hawthorn. Chem J. 2012;2(1):9–12.
  55. Mansouri A, Makris DP, Kefalas P. Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxyoxalate chemiluminescence-based assay: structure–activity relationships. J Pharm Biomed Anal. 2005;39(1–2):22–6.
  56. Lopez-Pascual A, Urrutia-Sarratea A, Lorente-Cebrián S, Martinez JA, González-Muniesa P. Cerium oxide nanoparticles regulate insulin sensitivity and oxidative markers in 3T3‐L1 adipocytes and C2C12 myotubes. Oxid Med Cell Longev. 2019;2019(1):2695289.
  57. Khan M, Sohail A, Raja NI, Asad MJ, Mashwani Z-u-R. Antioxidant and hypoglycemic potential of phytogenic cerium oxide nanoparticles. Sci Rep. 2023;13(1):4514.
  58. Calderon G, Juarez O, Hernandez G, Punzo S, De la Cruz Z. Oxidative stress and diabetic retinopathy: development and treatment. Eye. 2017;31(8):1122–30.
  59. Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative stress and its regulation in diabetic retinopathy. Antioxidants. 2023;12(8):1649.
  60. Li J, Liu Y, Geng K, Lu X, Shen X, Guo Q. ROS-responsive nanoparticles with antioxidative effect for the treatment of diabetic retinopathy. J Biomater Sci Polym Ed. 2025;36(4):440–61.
  61. Zhang L, Chu W, Zheng L, Li J, Ren Y, Xue L, et al. Zinc oxide nanoparticles from Cyperus rotundus attenuates diabetic retinopathy by inhibiting NLRP3 inflammasome activation in STZ‐induced diabetic rats. J Biochem Mol Toxicol. 2020;34(12):e22583.
  62. Swaroop A, Chew EY, Bowes Rickman C, Abecasis GR. Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet. 2009;10:19–43.
  63. Ting AY, Lee TK, MacDonald IM. Genetics of age-related macular degeneration. Curr Opin Ophthalmol. 2009;20(5):369–76.
  64. Kim E-M, Jeong H-J. Current status and future direction of nanomedicine: focus on advanced biological and medical applications. Nucl Med Mol Imaging. 2017;51:106–17.
  65. Fiorani L, Passacantando M, Santucci S, Di Marco S, Bisti S, Maccarone R. Cerium oxide nanoparticles reduce microglial activation and neurodegenerative events in light damaged retina. PLoS One. 2015;10(10):e0140387.
Language: English
Submitted on: Apr 27, 2025
Accepted on: Jun 13, 2025
Published on: Sep 18, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Hualei Chang, Yali Ding, Zhongqiao Zhu, Juan Zhu, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.