Have a personal or library account? Click to login
Solving Systems of Linear Equations under Conditions of Uncertainty on the Example of the Leontief Model Cover

Solving Systems of Linear Equations under Conditions of Uncertainty on the Example of the Leontief Model

Open Access
|Sep 2019

Figures & Tables

Fig. 1

Membership function of the triangular fuzzy number A = (a, b, c) and α-cutSource: Author's own elaboration.
Membership function of the triangular fuzzy number A = (a, b, c) and α-cutSource: Author's own elaboration.

Fig. 2

a) Ordered fuzzy number, b) OFN presented in relation to CFN, c) Arrow showing the order of the reverse functions and the orientation ofSource: (Kosiński and Prokopowicz, 2004).
a) Ordered fuzzy number, b) OFN presented in relation to CFN, c) Arrow showing the order of the reverse functions and the orientation ofSource: (Kosiński and Prokopowicz, 2004).

Fig. 3

a) OFN with positive orientation, b) OFN with negative orientationSource: (Kacprzak, 2010).
a) OFN with positive orientation, b) OFN with negative orientationSource: (Kacprzak, 2010).

Fig. 4

An example of an OFN together with its characteristic pointsSource: (Kacprzak, 2010).
An example of an OFN together with its characteristic pointsSource: (Kacprzak, 2010).

Fig. 5

Results obtained in Examples 3 and 4: a) constructed on a CFN, b) based on positively oriented OFNs, c) based on negatively oriented OFNsSource: Author's own elaboration
Results obtained in Examples 3 and 4: a) constructed on a CFN, b) based on positively oriented OFNs, c) based on negatively oriented OFNsSource: Author's own elaboration

Input-output table

Sectorinputs-outputsFinal outputTotal output
j
12n
1x11x12x1nd1X1
2x21x22x2nd2X2
i
nxn1xn2xnndnXn

Total output level as dependent on the direction of the changes of the final output level

Lp.d˜$\widetilde{d}$X˜$\widetilde{X}$ΔdΔX
1.((23815,23815,23815)(22615,22615,22615))$\left( \begin{array}{*{35}{l}}\left( 23815,23815,23815 \right) \\\left( 22615,22615,22615 \right) \\\end{array} \right)$((28576.2,28576.2,28576.2)(24197.6,24197.6,24197.6))$\left( \begin{array}{*{35}{l}}\left( 28576.2,28576.2,28576.2 \right) \\\left( 24197.6,24197.6,24197.6 \right) \\\end{array} \right)$(00)$\left( \begin{array}{*{35}{l}}0 \\0 \\\end{array} \right)$(00)$\left( \begin{array}{*{35}{l}}0 \\0 \\\end{array} \right)$
2.((23815,23815,23815)(22125,22615,23105))$\left( \begin{array}{*{35}{l}}\left( 23815,23815,23815 \right) \\\left( 22125,22615,23105 \right) \\\end{array} \right)$((28557,28576.2,28595.4)(23686.7,24197.6,24708.5))$\left( \begin{matrix}\left( 28557,28576.2,28595.4 \right) \\\left( 23686.7,24197.6,24708.5 \right) \\\end{matrix} \right)$(0980)$\left( \begin{matrix}0 \\980 \\\end{matrix} \right)$(38.41021.7)$\left( \begin{matrix}38.4 \\1021.7 \\\end{matrix} \right)$
3.((23815,23815,23815)(23105,22615,22125))$\left( \begin{matrix}\left( 23815,23815,23815 \right) \\\left( 23105,22615,22125 \right) \\\end{matrix} \right)$((28557,28576.2,28595.4)23686.7,24197.6,24708.5)$\left( \begin{matrix}\left( 28557,28576.2,28595.4 \right) \\23686.7,24197.6,24708.5 \\\end{matrix} \right)$(0980)$\left( \begin{matrix}0 \\-980 \\\end{matrix} \right)$(38.41021.7)$\left( \begin{matrix}-38.4 \\-1021.7 \\\end{matrix} \right)$
4.((23305,23815,24325)(22615,22615,22615))$\left( \begin{array}{*{35}{l}}\left( 23305,23815,24325 \right) \\\left( 22615,22615,22615 \right) \\\end{array} \right)$((27983.2,28576.2,29169.2)(24184.3,24197.6,24210.9))$\left( \begin{matrix}\left( 27983.2,28576.2,29169.2 \right) \\\left( 24184.3,24197.6,24210.9 \right) \\\end{matrix} \right)$(10200)$\left( \begin{matrix}1020 \\0 \\\end{matrix} \right)$(118626.5)$\left( \begin{matrix}1186 \\26.5 \\\end{matrix} \right)$
5.((24325,23815,23305)(22615,22615,22615))$\left( \begin{matrix}\left( 24325,23815,23305 \right) \\\left( 22615,22615,22615 \right) \\\end{matrix} \right)$((27983.2,28576.2,29169.2)(24184.3,24197.6,24210.9))$\left( \begin{matrix}\left( 27983.2,28576.2,29169.2 \right) \\\left( 24184.3,24197.6,24210.9 \right) \\\end{matrix} \right)$(10200)$\left( \begin{matrix}-1020 \\0 \\\end{matrix} \right)$(118626.5)$\left( \begin{matrix}-1186 \\-26.5 \\\end{matrix} \right)$
6.((23305,23815,24325)(22125,22615,23105))$\left( \begin{matrix}\left( 23305,23815,24325 \right) \\\left( 22125,22615,23105 \right) \\\end{matrix} \right)$((27964,28576.2,29188.4)(23673.5,23197.6,24721.7))$\left( \begin{matrix}\left( 27964,28576.2,29188.4 \right) \\\left( 23673.5,23197.6,24721.7 \right) \\\end{matrix} \right)$(1020980)$\left( \begin{matrix}1020 \\980 \\\end{matrix} \right)$(1224.41048.3)$\left( \begin{matrix}1224.4 \\1048.3 \\\end{matrix} \right)$
7.((23305,23815,24325)(23105,22615,22125))$\left( \begin{array}{*{35}{l}}\left( 23305,23815,24325 \right) \\\left( 23105,22615,22125 \right) \\\end{array} \right)$((28002.4,28576.2,29150)(24695.2,24197.6,23700))$\left( \begin{array}{*{35}{l}}\left( 28002.4,28576.2,29150 \right) \\\left( 24695.2,24197.6,23700 \right) \\\end{array} \right)$(1020980)$\left( \begin{array}{*{35}{l}}1020 \\-980 \\\end{array} \right)$(1147.5995.2)$\left( \begin{array}{*{35}{l}}1147.5 \\-995.2 \\\end{array} \right)$
8.((24325,23815,23305)(22125,22615,23105))$\left( \begin{array}{*{35}{l}}\left( 24325,23815,23305 \right) \\\left( 22125,22615,23105 \right) \\\end{array} \right)$((29150,28576.2,28002.4)(23700,24197.6,24695.2))$\left( \begin{array}{*{35}{l}}\left( 29150,28576.2,28002.4 \right) \\\left( 23700,24197.6,24695.2 \right) \\\end{array} \right)$(1020980)$\left( \begin{array}{*{35}{l}}-1020 \\\,\,\,\,980 \\\end{array} \right)$(1147.5995.2)$\left( \begin{array}{*{35}{l}}-1147.5 \\\,\,\,995.2 \\\end{array} \right)$
9.((24325,23815,23305)(23105,22615,22125))$\left( \begin{array}{*{35}{l}}\left( 24325,23815,23305 \right) \\\left( 23105,22615,22125 \right) \\\end{array} \right)$((29188.4,28576.2,27964)(24721.7,24197.6,23673.5))$\left( \begin{array}{*{35}{l}}\left( 29188.4,28576.2,27964 \right) \\\left( 24721.7,24197.6,23673.5 \right) \\\end{array} \right)$(1020980)$\left( \begin{array}{*{35}{l}}-1020 \\\,\,-980 \\\end{array} \right)$(1224.41048.3)$\left( \begin{array}{*{35}{l}}-1224.4 \\-1048.3 \\\end{array} \right)$
DOI: https://doi.org/10.1515/ceej-2018-0017 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 244 - 259
Published on: Sep 11, 2019
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Dariusz Kacprzak, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.