Have a personal or library account? Click to login

EWS-GARCH: New Regime Switching Approach to Forecast Value-at-Risk

Open Access
|Dec 2018

References

  1. Abad, Pilar, Sofia Benito, and Carmen López. 2014. “A Comprehensive Review of Value at Risk Methodologies.” The Spanish Review of Financial Economics 12: 15–32. https://doi.org/10.1016/j.srfe.2013.06.001
  2. Abad, Pilar, and Sofia Benito. 2013. “A Detailed Comparison of Value at Risk Estimates.” Mathematics and Computers in Simulation 94: 258–276. https://doi.org/10.1016/j.matcom.2012.05.011
  3. Alexander, Carol, and Emese Lazar. 2006. “Normal mixture GARCH(1,1): Applications to Exchange Rate Modelling.” Journal of Applied Econometrics 21: 307–336. https://doi.org/10.1002/jae.849
  4. Alexander, Carol. 2008. Market Risk Analysis Volume 4. Value-at-Risk Models Wiley: New York.
  5. Angelidis, Timotheos, Alexandros Benos, and Stavros Degiannakis. 2006. “A Robust VaR Model under Different Time Periods and Weighting Schemes.” Review of Quantitative Finance and Accounting 28: 187–201. https://doi.org/10.1007/s11156-006-0010-y
  6. Barone-Adesi, Giovanni, and Kostas Giannopoulos. 2001. “Non Parametric VaR Techniques. Myths and Realities.” Economic Notes 30: 167–181. https://doi.org/10.1111/j.0391-5026.2001.00052.x
  7. Bollerslev, Tim, and Jeffrey M. Wooldridge. 1992. “Quasi-maximum Likelihood Estimation and Inference in Dynamic Models with Time-Varying Covariances.” Econometric Reviews 11: 143–172. https://doi.org/10.1080/07474939208800229
  8. Bollerslev, Tim. 2008. “Glossary to ARCH GARCH.” CREATES Research Papers 2008–49. http:// dx.doi.org/10.2139/ssrn.1263250
  9. Brownlees, Christian, Robert F. Engle, and Bryan T. Kelly. 2011. A Practical Guide to Volatility Forecasting through Calm and Stormhttp://dx.doi.org/10.2139/ssrn.1502915
  10. Cai, Jun. 1994. “A Markov Model of Switching-Regime ARCH.” Journal of Business & Economic Statistics 12: 309−316.
  11. Caporin, Massimiliano. 2008. “Evaluating Value-At-Risk Measures in the Presence of Long Memory Conditional Volatility.” Journal of Risk 10: 79–110.
  12. Chan, Felix, and Michael Mcaleer. 2002. “Maximum Likelihood Estimation of STAR and STAR-GARCH Models: Theory and Monte Carlo Evidence.” Journal of Applied Econometrics 17: 509–534. https://doi.org/10.1002/jae.686
  13. Chlebus, Marcin. 2016. “One-day Prediction of State of Turbulence for Portfolio. Models for Binary Dependent Variable.” Faculty of Economic Sciences, University of Warsaw Working Papers 2016–01.
  14. Christoffersen, Peter. 1998. “Evaluating Interval ForecastingInternational Economic Review 39: 841–862.
  15. Degiannakis, Stavros, Christos Floros, and Alexandra Livada. 2012. “Evaluating Value-At-Risk Models Before and After the Financial Crisis of 2008.” Managerial Finance 38: 436–452. https://doi.org/10.1108/03074351211207563
  16. Dimitrakopoulos, Dimitris N. Manolis G. Kavussanos, and Spyros I. Spyrou. 2010. “Value at Risk Models for Volatile Emerging Markets Equity Portfolios.” The Quarterly Review of Economics and Finance 50: 515–526. https://doi.org/10.1016/j.qref.2010.06.006
  17. Engle, Robert. 2001. “GARCH 101: The Use of ARCH/ GARCH Models in Applied Econometrics.” Journal of Economic Perspectives 15: 157–168. https://doi.org/10.1257/jep.15.4.157
  18. Engle, Robert. 2004. “Risk and Volatility: Econometric Models and Financial Practice.” American Economic Review 94: 405–420. https://doi.org/10.1257/0002828041464597
  19. Engle, Robert, and Simone Manganelli. 1999. “CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles.” NBER Working Paper 7341.
  20. Engle, Robert, and Simone Manganelli. 2001. “Value-at-Risk Models in Finance.” ECB Working Paper (accessed: 6.12.2013).
  21. Gençay, Ramazan, and Faruk Selçuk. 2004. “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets.” International Journal of Forecasting 20: 287–303. https://doi.org/10.1016/j.ijforecast.2003.09.005
  22. Hamilton, James D., and Raul Susmel. 1994. “Autoregressive Conditional Heteroskedasticity and Changes in Regime.” Journal of Econometrics 64: 307–333. https://doi.org/10.1016/0304-407694.90067-1
  23. Kupiec, Paul H. 1995: Techniques for Verifying the Accuracy of Risk Measurement Models.” The Journal of Derivatives 3(2): 73−84. https://doi.org/10.3905/jod.1995.407942
  24. Lopez, Jose A. 1999. “Methods for Evaluating Value-at-Risk Estimates.” Federal Reserve Bank of San Francisco Economic Review 2: 3–17.
  25. Marcucci, Juri. 2005. “Forecasting Stock Market Volatility with Regime-Switching GARCH Models.” Studies in Nonlinear Dynamics & Econometrics 94: 1−55. https://doi.org/10.2202/1558-3708.1145
  26. Mcaleer, Michael, Juan-Angel Jimenez-Martin, and Teodosio Perez-Amaral. 2013. “Has the Basel Accord Improved Risk Management During the Global Financial Crisis?” The North American Journal of Economics and Finance 26: 250–265. https://doi.org/10.1016/j.najef.2013.02.004
  27. Nozari, Milad, Sepideh M. Raei, Pedram Jahanguin, and Mohsen Bahramgiri. 2010. “A Comparison of Heavy-Tailed Estimates and Filtered Historical Simulation: Evidence from Emerging Markets.” International Review of Business Papers 64: 347–359.
  28. Ozun, Aper, Atilla Cifter, and Sait Yılmazer. 2010. “Filtered Extreme-Value Theory for Value-At-Risk Estimation: Evidence from Turkey.” The Journal of Risk Finance 11: 164–179. https://doi.org/10.1108/15265941011025189
  29. Panjer, Harry H. 2006. Operational Risk: Modeling Analytics Wiley: New York.
DOI: https://doi.org/10.1515/ceej-2017-0014 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 01 - 25
Published on: Dec 18, 2018
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2018 Marcin Chlebus, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.