Have a personal or library account? Click to login
A Novel Probabilistic Strategy for Delay Corrected Allocation in Shared Resource Systems Cover

A Novel Probabilistic Strategy for Delay Corrected Allocation in Shared Resource Systems

Open Access
|Jun 2017

References

  1. 1. Khan, S. U., I. Ahmad. Non-Cooperative, Semi-Cooperative, and Cooperative Games-Based Grid Resource Allocation. – In: Proc. of 20th International Parallel and Distributed Processing Symposium IPDPS’2006, 2006. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=16393810.1109/IPDPS.2006.1639358
  2. 2. Niyato, D., A. V. Vasilakos, Z. Kun. Resource and Revenue Sharing with Coalition Formation of Cloud Providers: Game Theoretic Approach. – In: Proc. of 11th IEEE/ACM International Symposium on Cluster, Grid and Cloud Computing, May 2011, pp. 215-224. http://dx.doi.org/10.1109/CCGrid.2011.3010.1109/CCGrid.2011.30
  3. 3. Hong, M. An Alternating Direction Method Approach to Cloud Traffic Management. December 2014. http://arxiv.org/pdf/1407.8309.pdf
  4. 4. Xu, Y,. J. Chen, J. Wang, Y. Xu, Q. Wu, A. Anpalagan. Centralized-Distributed Spectrum Access for Small Cell Networks: A Cloud-Based Game Solution. February 2015. http://arxiv.org/pdf/1502.06670.pdf
  5. 5. Bala, A., I. Chena. A Survey of Various Scheduling Algorithms in Cloud Environment. – International Journal of Engineering Inventions, Vol. 1, 2011, No 2. http://www.ijeijournal.com/papers/v1i2/F0123639.pdf
  6. 6. Liu, K., Y. Yang, J. Chen, X. Liu, D. Yuan, H. Jin. A Compromised-Time-Cost Scheduling Algorithm in SwinDeW-C for Instance-Intensive Cost-Constrained Workflows on Cloud Computing Platform. – International Journal of High Performance Computing Applications, Vol. 24, May 2010, No 4, pp. 445-456.10.1177/1094342010369114
  7. 7. Pandey, S., L. Wu1, S. M. Guru, R. Buyya. A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments. – In: Proc. of 24th IEEE International Conference on Advanced Information Networking and Applications (AINA’2010), April 2010, pp. 400-407.10.1109/AINA.2010.31
  8. 8. Yang, Y., K. Liu, J. Chen, X. Liu, D. Yuan, H. Jin. An Algorithm in SwinDeW-C for Scheduling Transaction Intensive Cost-Constrained Cloud Workflows. – In: Proc. of 4th IEEE International Conference on e-Science, Indianapolis, USA, December 2008, pp. 374-375.10.1109/eScience.2008.93
  9. 9. Lin, C., S. Lu. Scheduling Scientific Workflows Elastically for Cloud Computing. – In: Proc. of IEEE 4th International Conference on Cloud Computing, July 2011, pp. 746-747.10.1109/CLOUD.2011.110
  10. 10. Xu, M., L. Cui, H. Wang., Y. Bi. A Multiple QoS Constrained Scheduling Strategy of Multiple Workflows for Cloud Computing. – In: Proc. of IEEE International Symposium on Parallel and Distributed Processing, August 2009, pp. 629-634.10.1109/ISPA.2009.95
  11. 11. Venticinque, S., R. Aversa, B. Di Martino, M. Rak, D. Petcu. A Cloud Agency for SLA Negotiation and Management. – In: M. R. Guarracino et al., Eds. Parallel Processing Workshops, Euro-Par’2010. – Lecture Notes in Computer Science. Vol. 6586. Berlin, Heidelberg, Springer, 2011.
  12. 12. Goswami, B., S. Saha. Article: Resource Allocation Modeling in Abstraction Using Predator-Prey Dynamics: A Qualitative Analysis. – International Journal of Computer Applications, Vol. 61, 6-13 January 2013, No 6.10.5120/9930-4562
  13. 13. Dressler, F., O. B. Akan. A Survey on Bio-Inspired Networking. – Journal of Computer Networks, Elsevier, Vol. 54, 2010, No 6, pp. 281-290.10.1016/j.comnet.2009.10.024
  14. 14. Jalaparti, V., G. Nguyen, I. Gupta, M. Caeser. Cloud Resource Allocation Games. Technical Report, University of Illinois. http://hdl.handle.net/2142/17427.
  15. 15. Xu, X., H. Yu. A Game Theory Approach to Fair and Efficient Resource Allocation in Cloud Computing. – Mathematical Problems in Engineering, Vol. 2014, 2014, Article ID 915878, 14 pages. doi:10.1155/2014/915878.10.1155/2014/915878
  16. 16. Pillai, P. S., S. Rao. Resource Allocation in Cloud Computing Using the Uncertainty Principle of Game Theory. – IEEE System Journal, Vol. PP, May 2014, No 99, pp. 1-12.
  17. 17. Li, Y., A. M. K. Cheng. Static Approximation Algorithms for Regularity-Based Resource Partitioning. – In: 33rd Real-Time Systems Symposium (RTSS’12), 2012, IEEE, pp. 137-148.10.1109/RTSS.2012.66
  18. 18. Rajkumar, S. R. Resource Optimization Using Virtual Machine Swapping Circuits, Power and Computing Technologies. – In: International Conferences on Circuits, Power and Computing Technologies (ICCPCT’13), 2013.
  19. 19. Wei, Y., C.-Z. Xu. Dynamic Balance Configuration of Multi Resource in Virtual Cluster. – In: Proc. of 21st IEEE International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS’13), 2013, pp. 60-69.10.1109/MASCOTS.2013.14
  20. 20. Yu, H., W. Shi, T. Bai. An Open-Stack Based Resource Optimization Scheduling Framework. – In: 6th International Symposium on Computational Intelligence and Design, 2013, IEEE.
  21. 21. Saha, S., J. Sarkar, M. N. Anand, A. Dwivedi, N. Dwivedi, R. Roy, S. Rao. A Novel Revenue Optimization Model to Address the Operation and Maintenance Cost of a Data Center. – Journal of Cloud Computing: Advances, Systems and Applications, Springer, Vol. 5, 2016, Issue 1, pp 1-23.10.1186/s13677-016-0063-y
  22. 22. Sarasvathi, V. N., S. N. Iyengar, S. Saha. QoS Guaranteed Intelligent Routing Using Hybrid PSO-GA in Wireless Mesh Networks. – Cybernetics and Information Technologies, Vol. 15, 2015, No 1, pp 69-83.10.1515/cait-2015-0007
  23. 23. Mohanchandra, K., S. Saha, S. K. Murthy, G. M. Lingaraju. Distinct Adoption of k-Nearest Neighbor and Support Vector Machine in Classifying EEG Signals of Mental Tasks. – International Journal of Intelligent Engineering Informatics, Vol. 3, 2015, No 3.10.1504/IJIEI.2015.073064
  24. 24. Mohanchandra, K., S. Saha, G. M. Lingaraju. EEG Based Brain Computer Interface for Speech Communication: Principles and Applications. – In: Brain-Computer Interfaces: Springer International Publishing, 2015, pp. 273-293.
  25. 25. Kumar, D., S. K. Meher. Granular Neural Networks Models with Class-Belonging Granulation. – In: Proc. of International IEEE Conference on Contemporary Computing and Informatics (IC3I’14), 2014, pp. 1198-1202.10.1109/IC3I.2014.7019743
  26. 26. Mohanchandra, K., S. Saha. Optimal Channel Selection for Robust EEG Single-Trial Analysis. – AASRI Procedia, Vol. 9, 2014, Elsevier, pp. 64-71.10.1016/j.aasri.2014.09.012
  27. 27. Bora, K., S. Saha, S. Agrawal, M. Safonova, S. Routh, A. Narasimhamurthy. CD-HPF: New Habitability Score via Data Analytic Modeling Elsvier. – Astronomy and Computing, Vol. 17, 2016, pp. 129-143.10.1016/j.ascom.2016.08.001
  28. 28. Khaidem., L., S. Saha, S. R. Dey. Predicting the Direction of Stock Market Prices Using Random Forest arXiv Preprint arXiv:1605.00003.
  29. 29. Saha, S., N. Jangid, A. Mathur, A. M. Narsimhamurthy. DSRS: Estimation and Forecasting of Journal Influence in the Science and Technology Domain via a Lightweight Quantitative Approach COLLNET. – Journal of Scientometrics and Information Management, Vol. 10, 2016, No 1, pp. 41-70.10.1080/09737766.2016.1177939
DOI: https://doi.org/10.1515/cait-2017-0018 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 83 - 96
Published on: Jun 26, 2017
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 G. Arun Kumar, Aravind Sundaresan, Snehanshu Saha, Bidisha Goswami, Shakti Mishra, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.