Have a personal or library account? Click to login
Indirect Detection Method of Rotor Position Based on DE-SVM Cover

Indirect Detection Method of Rotor Position Based on DE-SVM

By: Bo Wang,  Xiaofu Ji and  Jihe Cai  
Open Access
|Jan 2017

References

  1. 1. Wen, Z. M., B. Liu. Comparison of Some Indirect Rotor-Position Detection Techniques for Switched Reluctance Motors. – SCI/TECH Information Development & Economy, Vol. 15, 2005, No 18, pp. 199-201.
  2. 2. Zhou, S. Y., H. Lin. Rotor Position Detection Techniques of Switched Reluctance Motor without Position Sensor. – Electric Drive, Vol. 36, 2006, No 2, pp. 8-10.
  3. 3. Hou, X. C., Y. L. Cui, J. M. R. Liu. Rotor Position Angle Estimation and Speed Control in SRD Using Fuzzy Logic Based Motor Model. – Electric Drive, Vol. 30, 2003, No 5, pp. 15-18.
  4. 4. Wang, X., Y. Gao, C. J. Su. Rotor Position Angle Estimation Research in SRD Using Fuzzy Logic Rule. – Journal of Yanshan University, Vol. 23, 2006, No 6, pp. 518-521.
  5. 5. Liang, D. L., W. Ding, Z. M. Yu. Modeling for Switched Reluctance Motor Based on Adaptive Network-Based Fuzzy Inference System. – Proceedings of the CSEE, Vol. 9, 2008, No 9, pp. 86-92.
  6. 6. Zhang, D. P., W. Wang, L. X. Su. An Improved Sensorless Driving Method of Switched Reluctance Motors Based on Fuzzy Logic. – Modern Electronics Technique, Vol. 18, 2008, No 6, pp. 171-174.
  7. 7. Xia, C. L., M. C. Wang, T. N. Shi, P. J. Guo. Position Sensorless Control for Switched Reluctance Motors Using Neural Network. – Proceedings of the CSEE, Vol. 25, 2010, No 13, pp. 123-128.
  8. 8. Kuai, S. Y., X. L. Zhang, Q. H. Wang, N. Zhang. Position Sensorless Control of SRM Using Neural Network. – Electric Machines and Control, Vol. 15, 2011, No 8, pp. 18-22.
  9. 9. Xia, C. L., X. M. Xie, T. N. Shi, Y. Tian. Position Sensorless Control of Switched Reluctance Motor Using Wavelet Neural Networks. –Transactions of China Electrotechnical Society, Vol. 23, 2008, No 7, pp. 33-38.
  10. 10. Deng, N., Y. Tian. The New Method of Data Mining Based on Support Vector Machine. Science Press, Beijing, 2004.
  11. 11. Wang, X. D., C. J. Zhang, H. R. Zhang. Sensor Dynamic Modelling Using Least Square Support Vector Machines. – Chinese Journal of Scientific Instrument, Vol. 27, 2006, No 7, pp. 730-733.
  12. 12. Fang, R. M. Gas Leakage Detection Based on Clustering Support Vector Machine. – Chinese Journal of Scientific Instrument, Vol. 28, 2007, No 11, pp. 2028-2033.
  13. 13. Chappelle, O., V. Vapnik, O. Bousquet et al. Choosing Multiple Parameters for Support Vector Machines. – Machine Learning, Vol. 46, 2002, No 1, pp. 131-160.10.1023/A:1012450327387
  14. 14. Shao, X. G., H. Z. Yang, G. Chen. Parameters Selection and Application of Support Vector Machines Based on Particle Swarm Optimization Algorithm. – Control Theory and Applications, Vol. 23, 2006, No 5, pp. 740-743.
  15. 15. Zhuang, Y., Z. L. Bai, Y. F. Xu. Research on Parameters of Support Vector Machine Based on Antcolony Algorithm. – Computer Simulation, Vol. 28, 2011, No 5, pp. 216-219.
  16. 16. Wu, L. H., Y. N. Wang et al. Environmental/Economic Power Dispatch Problem Using Multi-Objective Differential Evolution Algorithm. – Electric Power Systems Research, Vol. 80, 2010, No 9, pp. 1171-1181.10.1016/j.epsr.2010.03.010
  17. 17. Wang, L., L. P. Li. Fixed-Structure H∞ Controller Synthesis Based on Differential Evolution with Level Comparison. – IEEE Transactions on Evolutionary Computation, Vol. 15, 2011, No 1, pp. 120-129.10.1109/TEVC.2010.2077300
DOI: https://doi.org/10.1515/cait-2016-0087 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 185 - 193
Published on: Jan 25, 2017
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Bo Wang, Xiaofu Ji, Jihe Cai, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.