Have a personal or library account? Click to login
Determination of the Starting Point in Time Series for Trend Detection Based on Overlapping Trend Cover

Determination of the Starting Point in Time Series for Trend Detection Based on Overlapping Trend

By: Gao Xuedong and  Gu Kan  
Open Access
|Jan 2017

References

  1. 1. Janusz, M. E., V. Venkatasubramanian. Automatic Generation of Qualitative Descriptions of Process Trends for Fault Detection and Diagnosis. – Eng. Appl. Artif. Intell., Vol. 4, 1991, No 5, pp. 329-339.10.1016/0952-1976(91)90001-M
  2. 2. Li, H., C. Guo. Survey of Feature Representations Andsimilarity Measurements in Time Series Data Mining. – Appl. Res. Comput., Vol. 30, 2013, No 5, pp. 1285-1291.
  3. 3. Keogh, E., K. Chakrabarti, M. Pazzani, S. Mehrotra. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. – Knowl. Inf. Syst., Vol. 3, 2001, No 3, pp. 263-286.10.1007/PL00011669
  4. 4. Agrawal, R., C. Faloutsos, A. Swami. Efficient Similarity Search in Sequence Databases. – Springer, 1993.10.1007/3-540-57301-1_5
  5. 5. Struzik, Z. R., A. Siebes. Wavelet Transform in Similarity Paradigm. – Springer, 1998.10.1007/3-540-64383-4_25
  6. 6. Keogh, E., S. Chu, D. Hart, M. Pazzani. An Online Algorithm for Segmenting Time Series. – In: Proc. of IEEE International Conference on Data Mining 2001 (ICDM’01), IEEE, 2001, pp. 289-296.
  7. 7. Korn, F., H. V. Jagadish, C. Faloutsos. Efficiently Supporting Ad Hoc Queries in Large Datasets of Time Sequences. – ACM SIGMOD Rec., Vol. 26, 1997, No 2, pp. 289-300.10.1145/253262.253332
  8. 8. Li, A., Q. Zheng. Dimensionality Reduction and Similarity Search in Large Time Series Databases. – Chin. J. Comput., Vol. 28, 2005, No 9, pp. 1467-1475.
  9. 9. Fuchs, E., T. Gruber, J. Nitschke, B. Sick. Online Segmentation of Time Series Based on Polynomial Least-Squares Approximations. – Pattern. Anal. Mach. Intell. IEEE Trans. On, Vol. 32, 2010, No 12, pp. 2232-2245.10.1109/TPAMI.2010.4420975120
  10. 10. Xuedong, G., G. Kan. The Inertia Test and Trend Partition for Trend Detection in Sequential Data. – In: 2015 International Conference on Logistics, Informatics and Service Sciences (LISS’15). –IEEE, 2015, pp. 1-6.10.1109/LISS.2015.7369685
  11. 11. Zhang, C., L. Huang, Z. Zhao. Research on Combination Forecast of Port Cargo Throughput Based on Time Series and Causality Analysis. – J. Ind. Eng. Manag., Vol. 6, 2013, No 1, pp. 124-134.10.3926/jiem.687
  12. 12. Kuhn, J. Time Analysis in International Logistics Systems with the 6-Sigma Approach Towards an International JIT-System. – J. Syst. Manag. Sci., Vol. 1, 2011, No 1, pp. 73-81.
  13. 13. He, S. Applied Time Series Analysis. Peking University Press, 2004.
  14. 14. Fang, J. Time Series Piecewise Linear Representation and Qualitative Trend Analysis. Mastersthesis, Lanzhou University of Technology, 2013.
  15. 15. Babcock, B., S. Babu, M. Datar, R. Motwani, J. Widom. Models and Issues in Data Stream Systems. – In: Proc. of 21 ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, ACM, 2002, pp. 1-16.10.1145/543613.543615
DOI: https://doi.org/10.1515/cait-2016-0080 | Journal eISSN: 1314-4081 | Journal ISSN: 1311-9702
Language: English
Page range: 98 - 110
Published on: Jan 25, 2017
Published by: Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Gao Xuedong, Gu Kan, published by Bulgarian Academy of Sciences, Institute of Information and Communication Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.